439 research outputs found

    Hybrid IGDT-stochastic self-scheduling of a distributed energy resources aggregator in a multi-energy system

    Get PDF
    The optimal management of distributed energy resources (DERs) and renewable-based generation in multi-energy systems (MESs) is crucial as it is expected that these entities will be the backbone of future energy systems. To optimally manage these numerous and diverse entities, an aggregator is required. This paper proposes the self-scheduling of a DER aggregator through a hybrid Info-gap Decision Theory (IGDT)-stochastic approach in an MES. In this approach, there are several renewable energy resources such as wind and photovoltaic (PV) units as well as multiple DERs, including combined heat and power (CHP) units, and auxiliary boilers (ABs). The approach also considers an EV parking lot and thermal energy storage systems (TESs). Moreover, two demand response (DR) programs from both price-based and incentive-based categories are employed in the microgrid to provide flexibility for the participants. The uncertainty in the generation is addressed through stochastic programming. At the same time, the uncertainty posed by the energy market prices is managed through the application of the IGDT method. A major goal of this model is to choose the risk measure based on the nature and characteristics of the uncertain parameters in the MES. Additionally, the behavior of the risk-averse and risk-seeking decision-makers is also studied. In the first stage, the sole-stochastic results are presented and then, the hybrid stochastic-IGDT results for both risk-averse and risk-seeker decision-makers are discussed. The proposed problem is simulated on the modified IEEE 15-bus system to demonstrate the effectiveness and usefulness of the technique.© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Catching Cheats: Detecting Strategic Manipulation in Distributed Optimisation of Electric Vehicle Aggregators

    Full text link
    Given the rapid rise of electric vehicles (EVs) worldwide, and the ambitious targets set for the near future, the management of large EV fleets must be seen as a priority. Specifically, we study a scenario where EV charging is managed through self-interested EV aggregators who compete in the day-ahead market in order to purchase the electricity needed to meet their clients' requirements. With the aim of reducing electricity costs and lowering the impact on electricity markets, a centralised bidding coordination framework has been proposed in the literature employing a coordinator. In order to improve privacy and limit the need for the coordinator, we propose a reformulation of the coordination framework as a decentralised algorithm, employing the Alternating Direction Method of Multipliers (ADMM). However, given the self-interested nature of the aggregators, they can deviate from the algorithm in order to reduce their energy costs. Hence, we study the strategic manipulation of the ADMM algorithm and, in doing so, describe and analyse different possible attack vectors and propose a mathematical framework to quantify and detect manipulation. Importantly, this detection framework is not limited the considered EV scenario and can be applied to general ADMM algorithms. Finally, we test the proposed decentralised coordination and manipulation detection algorithms in realistic scenarios using real market and driver data from Spain. Our empirical results show that the decentralised algorithm's convergence to the optimal solution can be effectively disrupted by manipulative attacks achieving convergence to a different non-optimal solution which benefits the attacker. With respect to the detection algorithm, results indicate that it achieves very high accuracies and significantly outperforms a naive benchmark

    A robust vehicle to grid aggregation framework for electric vehicles charging cost minimization and for smart grid regulation

    Get PDF
    In this paper, we propose an optimal hierarchical bi-directional aggregation algorithm for the electric vehicles (EVs) integration in the smart grid (SG) using Vehicle to Grid (V2G) technology through a network of Charging Stations (CSs). The proposed model forecasts the power demand and performs Day-ahead (DA) load scheduling in the SG by optimizing EVs charging/discharging tasks. This method uses EVs and CSs as the voltage and frequency stabilizing tools in the SG. Before penetrating EVs in the V2G mode, this algorithm determines the on arrival EVs State of Charge (SOC) at CS, obtains projected park/departure time information from EV owners, evaluates their battery degradation cost prior to charging. After obtaining all necessary data, it either uses EV in the V2G mode to regulates the SG or charge it according to the owner request but, it ensure desired SOC on departure. The robustness of the proposed algorithm has been tested by using IEEE-32 Bus-Bars based power distribution in which EVs are integrated through five CSs. Two intense case studies have been carried out for the appropriate performance validation of the proposed algorithm. Simulations are performed using electricity pricing data from PJM and to test the EVs behaviour 3 types of EVs having different specifications are penetrated. Simulation results have proved that the proposed model is capable of integrating EVs in the voltage and frequency stabilization and it also simultaneously minimizes approximately $1500 in term of charging cost for EVs contributing in the V2G mode each day. Particularly, during peak hours this algorithm provides effective grid stabilization services.info:eu-repo/semantics/publishedVersio

    Energy resource management in smart buildings considering photovoltaic uncertainty

    Get PDF
    O aumento do consumo energético em edifícios residenciais tem levado a um maior foco nos métodos de eficiência energética. Deste modo, surge um sistema de gestão de energia residencial que poderá permitir controlar os recursos energéticos em pequena escala dos edifícios, levando a uma diminuição significativa dos custos energéticos através de um escalonamento eficiente. No entanto, a natureza intermitente das fontes de energia renováveis resulta num problema complexo. Para resolver este desafio, esta tese propõe um escalonamento energético baseado na otimização robusta, considerando a incerteza relacionada com a produção fotovoltaica. A otimização robusta é um método emergente e eficaz para lidar com a incerteza e apresenta soluções ótimas considerando o pior cenário da incerteza, ou seja, encontra a melhor solução entre todos os piores cenários possíveis. Um problema de Programação Linear Binária é inicialmente formulado para minimizar os custos do escalonamento energético. De seguida, o objetivo desta tese é transformar o modelo determinístico num problema robusto equivalente para proporcionar-lhe imunidade contra a incerteza associada à produção fotovoltaica. O modelo determinístico é, assim, transformado num modelo do pior cenário possível. Para validar a eficiência e a eficácia do modelo, a metodologia proposta foi implementada em dois cenários sendo cada um deles constituído por três casos de estudo de escalonamento de energia, para um horizonte de escalonamento a curto prazo. Os resultados da simulação demonstram que a abordagem robusta consegue, efetivamente, minimizar os custos totais de eletricidade do edifício, mitigando, simultaneamente, os obstáculos referentes à incerteza relacionada com a produção fotovoltaica. É também demonstrado que a estratégia desenvolvida permite o ajustamento do escalonamento dos recursos energéticos do edifício de acordo com o nível de robustez selecionado.The increase of energy demand in residential buildings has led to a higher focus on energy efficiency methods. This way, the home energy management system arises to control small-scale energy resources on buildings allowing a significant electricity bill decrease throughout efficient scheduling. However, the intermittent and uncertain nature of renewable energy sources results in a complex problem. To solve this challenge, this thesis proposes robust optimization-based scheduling considering the uncertainty in solar generation. Robust Optimization is a very recent and effective technique to deal with uncertainty and provides optimal solutions for the worst-case realization of the uncertain parameter, i.e., it finds the best solution among all the worst scenarios. A Mixed Binary Linear Programming problem is initially formulated to minimize the costs of the energy resource scheduling. Then, this thesis's purpose is to transform the deterministic model into a trackable robust counterpart problem to provide immunity against the photovoltaic output uncertainty. The deterministic model is transformed into the worst-case model. To validate the model’s efficiency and effectiveness, the proposed methodology was implemented in two scenarios with three different energy scheduling case studies for a short-term scheduling horizon. The simulation results demonstrate that the robust approach can effectively minimize the electricity costs of the building while mitigating the drawbacks associated with solar uncertainty. It also proves that the proposed strategy adjusts the energy scheduling according to the selected robustness level

    Evaluating the Effect of Electric Vehicle Parking Lots in Transmission-Constrained AC Unit Commitment under a Hybrid IGDT-Stochastic Approach

    Get PDF
    Power network operators have recently faced new challenges due to an increase in the penetration of non-dispatchable renewable energy sources in power grids. Incorporating emerging flexible resources like electric vehicle parking lots (EVPLs) and demand response programs (DRPs) into power systems, could be a good solution to deal with inherent uncertainties imposed by these resources to the power grid. EVPLs can improve power system operating conditions by active and reactive power injection capabilities. The participation of consumers in DRPs can also improve energy consumption management by decreasing or shifting loads to other periods. This paper proposes a hybrid information gap decision theory (IGDT)- stochastic method to solve a transmission-constrained AC unit commitment model integrated with electric vehicle (EV), incentive-based DRP, and wind energy. The behavioural uncertainty related to EV owners is modelled using a scenario-based method. Additionally, an IGDT method is applied to manage wind energy uncertainty under a two-level optimization model. Verification of the proposed model is done under several case studies. Based on the results achieved, the proposed risk-based hybrid model allows the operator to differentiate between the risk level of existing uncertainties and apply a high-flexibility decision-making model to deal with such difficulties. Additionally, the role of the aforementioned flexible resources in the reduction of power system running costs and wind power uncertainty handling are evaluated. Numerical results confirm a 3.7% reduction in the daily operating costs as a consequence of coordinated scheduling of EVPL and DRP. Moreover, Taking advantage of reactive power injection of EVPL provides more cost saving
    corecore