3,383 research outputs found

    Active Classification for POMDPs: a Kalman-like State Estimator

    Full text link
    The problem of state tracking with active observation control is considered for a system modeled by a discrete-time, finite-state Markov chain observed through conditionally Gaussian measurement vectors. The measurement model statistics are shaped by the underlying state and an exogenous control input, which influence the observations' quality. Exploiting an innovations approach, an approximate minimum mean-squared error (MMSE) filter is derived to estimate the Markov chain system state. To optimize the control strategy, the associated mean-squared error is used as an optimization criterion in a partially observable Markov decision process formulation. A stochastic dynamic programming algorithm is proposed to solve for the optimal solution. To enhance the quality of system state estimates, approximate MMSE smoothing estimators are also derived. Finally, the performance of the proposed framework is illustrated on the problem of physical activity detection in wireless body sensing networks. The power of the proposed framework lies within its ability to accommodate a broad spectrum of active classification applications including sensor management for object classification and tracking, estimation of sparse signals and radar scheduling.Comment: 38 pages, 6 figure

    Recovery from Linear Measurements with Complexity-Matching Universal Signal Estimation

    Full text link
    We study the compressed sensing (CS) signal estimation problem where an input signal is measured via a linear matrix multiplication under additive noise. While this setup usually assumes sparsity or compressibility in the input signal during recovery, the signal structure that can be leveraged is often not known a priori. In this paper, we consider universal CS recovery, where the statistics of a stationary ergodic signal source are estimated simultaneously with the signal itself. Inspired by Kolmogorov complexity and minimum description length, we focus on a maximum a posteriori (MAP) estimation framework that leverages universal priors to match the complexity of the source. Our framework can also be applied to general linear inverse problems where more measurements than in CS might be needed. We provide theoretical results that support the algorithmic feasibility of universal MAP estimation using a Markov chain Monte Carlo implementation, which is computationally challenging. We incorporate some techniques to accelerate the algorithm while providing comparable and in many cases better reconstruction quality than existing algorithms. Experimental results show the promise of universality in CS, particularly for low-complexity sources that do not exhibit standard sparsity or compressibility.Comment: 29 pages, 8 figure
    • …
    corecore