30 research outputs found

    The Runbot: engineering control applied to rehabilitation in spinal cord injury patients

    Get PDF
    Human walking is a complicated interaction among the musculoskeletal system, nervous system and the environment. An injury affecting the neurological system, such as a spinal cord injury (SCI) can cause sensor and motor deficits, and can result in a partial or complete loss of their ambulatory functions. Functional electrical stimulation (FES), a technique to generate artificial muscle contractions with the application of electrical current, has been shown to improve the ambulatory ability of patients with an SCI. FES walking systems have been used as a neural prosthesis to assist patients walking, but further work is needed to establish a system with reduced engineering complexity which more closely resembles the pattern of natural walking. The aim of this thesis was to develop a new FES gait assistance system with a simple and efficient FES control based on insights from robotic walking models, which can be used in patients with neuromuscular dysfunction, for example in SCI. The understanding of human walking is fundamental to develop suitable control strategies. Limit cycle walkers are capable of walking with reduced mechanical complexity and simple control. Walking robots based on this principle allow bio-inspired mechanisms to be analysed and validated in a real environment. The Runbot is a bipedal walker which has been developed based on models of reflexes in the human central nervous system, without the need for a precise trajectory algorithm. Instead, the timing of the control pattern is based on ground contact information. Taking the inspiration of bio-inspired robotic control, two primary objectives were addressed. Firstly, the development of a new reflexive controller with the addition of ankle control. Secondly, the development of a new FES walking system with an FES control model derived from the principles of the robotic control system. The control model of the original Runbot utilized a model of neuronal firing processes based on the complexity of the central neural system. As a causal relationship between foot contact information and muscle activity during human walking has been established, the control model was simplified using filter functions that transfer the sensory inputs into motor outputs, based on experimental observations in humans. The transfer functions were applied to the RunBot II to generate a stable walking pattern. A control system for walking was created, based on linear transfer functions and ground reaction information. The new control system also includes ankle control, which has not been considered before. The controller was validated in experiments with the new RunBot III. The successful generation of stable walking with the implementation of the novel reflexive robotic controller indicates that the control system has the potential to be used in controlling the strategies in neural prosthesis for the retraining of an efficient and effective gait. To aid of the development of the FES walking system, a reliable and practical gait phase detection system was firstly developed to provide correct ground contact information and trigger timing for the control. The reliability of the system was investigated in experiments with ten able-bodied subjects. Secondly, an automatic FES walking system was implemented, which can apply stimulation to eight muscles (four in each leg) in synchrony with the user’s walking activity. The feasibility and effectiveness of this system for gait assistance was demonstrated with an experiment in seven able-bodied participants. This thesis addresses the feasibility and effectiveness of applying biomimetic robotic control principles to FES control. The interaction among robotic control, biology and FES control in assistive neural prosthesis provides a novel framework to developing an efficient and effective control system that can be applied in various control applications

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    The Future of Humanoid Robots

    Get PDF
    This book provides state of the art scientific and engineering research findings and developments in the field of humanoid robotics and its applications. It is expected that humanoids will change the way we interact with machines, and will have the ability to blend perfectly into an environment already designed for humans. The book contains chapters that aim to discover the future abilities of humanoid robots by presenting a variety of integrated research in various scientific and engineering fields, such as locomotion, perception, adaptive behavior, human-robot interaction, neuroscience and machine learning. The book is designed to be accessible and practical, with an emphasis on useful information to those working in the fields of robotics, cognitive science, artificial intelligence, computational methods and other fields of science directly or indirectly related to the development and usage of future humanoid robots. The editor of the book has extensive R&D experience, patents, and publications in the area of humanoid robotics, and his experience is reflected in editing the content of the book

    The biomechanics of human locomotion

    Get PDF
    Includes bibliographical references. The thesis on CD-ROM includes Animate, GaitBib, GaitBook and GaitLab, four quick time movies which focus on the functional understanding of human gait. The CD-ROM is available at the Health Sciences Library

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 157, August 1976

    Get PDF
    This bibliography lists 228 reports, articles, and other documents introduced into the NASA scientific and technical information system in July 1976

    Advances in Computer Science and Engineering

    Get PDF
    The book Advances in Computer Science and Engineering constitutes the revised selection of 23 chapters written by scientists and researchers from all over the world. The chapters cover topics in the scientific fields of Applied Computing Techniques, Innovations in Mechanical Engineering, Electrical Engineering and Applications and Advances in Applied Modeling
    corecore