111,205 research outputs found

    Data Preservation, Information Preservation, and Lifecyle of Information Management at NASA GES DISC

    Get PDF
    Data lifecycle management awareness is common today; planners are more likely to consider lifecycle issues at mission start. NASA remote sensing missions are typically subject to life cycle management plans of the Distributed Active Archive Center (DAAC), and NASA invests in these national centers for the long-term safeguarding and benefit of future generations. As stewards of older missions, it is incumbent upon us to ensure that a comprehensive enough set of information is being preserved to prevent the risk for information loss. This risk is greater when the original data experts have moved on or are no longer available. Preservation of items like documentation related to processing algorithms, pre-flight calibration data, or input-output configuration parameters used in product generation, are examples of digital artifacts that are sometimes not fully preserved. This is the grey area of information preservation; the importance of these items is not always clear and requires careful consideration. Missing important metadata about intermediate steps used to derive a product could lead to serious challenges in the reproducibility of results or conclusions. Organizations are rapidly recognizing that the focus of life-cycle preservation needs to be enlarged from the strict raw data to the more encompassing arena of information lifecycle management. By understanding what constitutes information, and the complexities involved, we are better equipped to deliver longer lasting value about the original data and derived knowledge (information) from them. The NASA Earth Science Data Preservation Content Specification is an attempt to define the content necessary for long-term preservation. It requires new lifecycle infrastructure approach along with content repositories to accommodate artifacts other than just raw data. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) setup an open-source Preservation System capable of long-term archive of digital content to augment its raw data holding. This repository is being used for such missions as HIRDLS, UARS, TOMS, OMI, among others. We will provide a status of this implementation; report on challenges, lessons learned, and detail our plans for future evolution to include other missions and services

    DePICT : a conceptual model for digital preservation

    Get PDF
    Digital Preservation addresses a significant threat to our cultural and economic foundation: the loss of access to valuable and, sometimes, unique information that is captured in digital form through obsolescence, deterioration or loss of information of how to access the contents. Digital Preservation has been defined as “The series of managed activities necessary to ensure continued access to digital materials for as long as necessary” (Jones, Beagrie, 2001/2008). This thesis develops a conceptual model of the core concepts and constraints that appear in digital preservation - DePICT (Digital PreservatIon ConceptualisaTion). This includes a conceptual model of the digital preservation domain, a top-level vocabulary for the concepts in the model, an in-depth analysis of the role of digital object properties, characteristics, and the constraints that guide digital preservation processes, and of how properties, characteristics and constraints affect the interaction of digital preservation services. In addition, it presents a machine-interpretable XML representation of this conceptual model to support automated digital preservation tools. Previous preservation models have focused on preserving technical properties of digital files. Such an approach limits the choices of preservation actions and does not fully reflect preservation activities in practice. Organisations consider properties that go beyond technical aspects and that encompass a wide range of factors that influence and guide preservation processes, including organisational, legal, and financial ones. Consequently, it is necessary to be able to handle ‘digital’ objects in a very wide sense, including abstract objects, such as intellectual entities and collections, in addition to the files and sets of files that create renditions of logical objects that are normally considered. In addition, we find that not only the digital objects' properties, but also the properties of the environments in which they exist, guide digital preservation processes. Furthermore, organisations use risk-based analysis for their preservation strategies, policies and preservation planning. They combine information about risks with an understanding of actions that are expected to mitigate the risks. Risk and action specifications can be dependent on properties of the actions, as well as on properties of objects or environments which form the input and output of those actions. The model presented here supports this view explicitly. It links risks with the actions that mitigate them and expresses them in stakeholder specific constraints. Risk, actions and constraints are top-level entities in this model. In addition, digital objects and environments are top-level entities on an equal level. Models that do not have this property limit the choice of preservation actions to ones that transform a file in order to mitigate a risk. Establishing environments as top-level entities enables us to treat risks to objects, environments, or a combination of both. The DePICT model is the first conceptual model in the Digital Preservation domain that supports a comprehensive, whole life-cycle approach for dynamic, interacting preservation processes, rather than taking the customary and more limited view that is concerned with the management of digital objects once they are stored in a long-term repository.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Digital curation: investment in an intangible asset

    Get PDF

    Digital Preservation, Archival Science and Methodological Foundations for Digital Libraries

    Get PDF
    Digital libraries, whether commercial, public or personal, lie at the heart of the information society. Yet, research into their long‐term viability and the meaningful accessibility of their contents remains in its infancy. In general, as we have pointed out elsewhere, ‘after more than twenty years of research in digital curation and preservation the actual theories, methods and technologies that can either foster or ensure digital longevity remain startlingly limited.’ Research led by DigitalPreservationEurope (DPE) and the Digital Preservation Cluster of DELOS has allowed us to refine the key research challenges – theoretical, methodological and technological – that need attention by researchers in digital libraries during the coming five to ten years, if we are to ensure that the materials held in our emerging digital libraries are to remain sustainable, authentic, accessible and understandable over time. Building on this work and taking the theoretical framework of archival science as bedrock, this paper investigates digital preservation and its foundational role if digital libraries are to have long‐term viability at the centre of the global information society.

    JISC Preservation of Web Resources (PoWR) Handbook

    Get PDF
    Handbook of Web Preservation produced by the JISC-PoWR project which ran from April to November 2008. The handbook specifically addresses digital preservation issues that are relevant to the UK HE/FE web management community”. The project was undertaken jointly by UKOLN at the University of Bath and ULCC Digital Archives department

    Preservation of Web Resources: The JISC PoWR Project

    Get PDF
    This paper describes the work of the JISC-funded PoWR (Preservation Of Web Resources) project which is developing a handbook on best practices and advice aimed at UK higher and further educational institutions for the preservation of Web sites and Web resources. The paper summarises the challenges institutions face in preserving Web resources, describes the workshops organized by the project in order to identify the challenges and identify appropriate best practices, and outlines areas in which further work is required

    Assessing digital preservation frameworks: the approach of the SHAMAN project

    Get PDF
    How can we deliver infrastructure capable of supporting the preservation of digital objects, as well as the services that can be applied to those digital objects, in ways that future unknown systems will understand? A critical problem in developing systems is the process of validating whether the delivered solution effectively reflects the validated requirements. This is a challenge also for the EU-funded SHAMAN project, which aims to develop an integrated preservation framework using grid-technologies for distributed networks of digital preservation systems, for managing the storage, access, presentation, and manipulation of digital objects over time. Recognising this, the project team ensured that alongside the user requirements an assessment framework was developed. This paper presents the assessment of the SHAMAN demonstrators for the memory institution, industrial design and engineering and eScience domains, from the point of view of user’s needs and fitness for purpose. An innovative synergistic use of TRAC criteria, DRAMBORA risk registry and mitigation strategies, iRODS rules and information system models requirements has been designed, with the underlying goal to define associated policies, rules and state information, and make them wherever possible machine-encodable and enforceable. The described assessment framework can be valuable not only for the implementers of this project preservation framework, but for the wider digital preservation community, because it provides a holistic approach to assessing and validating the preservation of digital libraries, digital repositories and data centres

    D3.2 Cost Concept Model and Gateway Specification

    Get PDF
    This document introduces a Framework supporting the implementation of a cost concept model against which current and future cost models for curating digital assets can be benchmarked. The value built into this cost concept model leverages the comprehensive engagement by the 4C project with various user communities and builds upon our understanding of the requirements, drivers, obstacles and objectives that various stakeholder groups have relating to digital curation. Ultimately, this concept model should provide a critical input to the development and refinement of cost models as well as helping to ensure that the curation and preservation solutions and services that will inevitably arise from the commercial sector as ‘supply’ respond to a much better understood ‘demand’ for cost-effective and relevant tools. To meet acknowledged gaps in current provision, a nested model of curation which addresses both costs and benefits is provided. The goal of this task was not to create a single, functionally implementable cost modelling application; but rather to design a model based on common concepts and to develop a generic gateway specification that can be used by future model developers, service and solution providers, and by researchers in follow-up research and development projects.<p></p> The Framework includes:<p></p> • A Cost Concept Model—which defines the core concepts that should be included in curation costs models;<p></p> • An Implementation Guide—for the cost concept model that provides guidance and proposes questions that should be considered when developing new cost models and refining existing cost models;<p></p> • A Gateway Specification Template—which provides standard metadata for each of the core cost concepts and is intended for use by future model developers, model users, and service and solution providers to promote interoperability;<p></p> • A Nested Model for Digital Curation—that visualises the core concepts, demonstrates how they interact and places them into context visually by linking them to A Cost and Benefit Model for Curation.<p></p> This Framework provides guidance for data collection and associated calculations in an operational context but will also provide a critical foundation for more strategic thinking around curation such as the Economic Sustainability Reference Model (ESRM).<p></p> Where appropriate, definitions of terms are provided, recommendations are made, and examples from existing models are used to illustrate the principles of the framework

    Audit and Certification of Digital Repositories: Creating a Mandate for the Digital Curation Centre (DCC)

    Get PDF
    The article examines the issues surrounding the audit and certification of digital repositories in light of the work that the RLG/NARA Task Force did to draw up guidelines and the need for these guidelines to be validated.

    Invest to Save: Report and Recommendations of the NSF-DELOS Working Group on Digital Archiving and Preservation

    Get PDF
    Digital archiving and preservation are important areas for research and development, but there is no agreed upon set of priorities or coherent plan for research in this area. Research projects in this area tend to be small and driven by particular institutional problems or concerns. As a consequence, proposed solutions from experimental projects and prototypes tend not to scale to millions of digital objects, nor do the results from disparate projects readily build on each other. It is also unclear whether it is worthwhile to seek general solutions or whether different strategies are needed for different types of digital objects and collections. The lack of coordination in both research and development means that there are some areas where researchers are reinventing the wheel while other areas are neglected. Digital archiving and preservation is an area that will benefit from an exercise in analysis, priority setting, and planning for future research. The WG aims to survey current research activities, identify gaps, and develop a white paper proposing future research directions in the area of digital preservation. Some of the potential areas for research include repository architectures and inter-operability among digital archives; automated tools for capture, ingest, and normalization of digital objects; and harmonization of preservation formats and metadata. There can also be opportunities for development of commercial products in the areas of mass storage systems, repositories and repository management systems, and data management software and tools.
    • …
    corecore