341 research outputs found

    How Technology Impacts and Compares to Humans in Socially Consequential Arenas

    Full text link
    One of the main promises of technology development is for it to be adopted by people, organizations, societies, and governments -- incorporated into their life, work stream, or processes. Often, this is socially beneficial as it automates mundane tasks, frees up more time for other more important things, or otherwise improves the lives of those who use the technology. However, these beneficial results do not apply in every scenario and may not impact everyone in a system the same way. Sometimes a technology is developed which produces both benefits and inflicts some harm. These harms may come at a higher cost to some people than others, raising the question: {\it how are benefits and harms weighed when deciding if and how a socially consequential technology gets developed?} The most natural way to answer this question, and in fact how people first approach it, is to compare the new technology to what used to exist. As such, in this work, I make comparative analyses between humans and machines in three scenarios and seek to understand how sentiment about a technology, performance of that technology, and the impacts of that technology combine to influence how one decides to answer my main research question.Comment: Doctoral thesis proposal. arXiv admin note: substantial text overlap with arXiv:2110.08396, arXiv:2108.12508, arXiv:2006.1262

    Adaptive Identification of Populations with Treatment Benefit in Clinical Trials: Machine Learning Challenges and Solutions

    Full text link
    We study the problem of adaptively identifying patient subpopulations that benefit from a given treatment during a confirmatory clinical trial. This type of adaptive clinical trial has been thoroughly studied in biostatistics, but has been allowed only limited adaptivity so far. Here, we aim to relax classical restrictions on such designs and investigate how to incorporate ideas from the recent machine learning literature on adaptive and online experimentation to make trials more flexible and efficient. We find that the unique characteristics of the subpopulation selection problem -- most importantly that (i) one is usually interested in finding subpopulations with any treatment benefit (and not necessarily the single subgroup with largest effect) given a limited budget and that (ii) effectiveness only has to be demonstrated across the subpopulation on average -- give rise to interesting challenges and new desiderata when designing algorithmic solutions. Building on these findings, we propose AdaGGI and AdaGCPI, two meta-algorithms for subpopulation construction. We empirically investigate their performance across a range of simulation scenarios and derive insights into their (dis)advantages across different settings.Comment: To appear in the Proceedings of the 40th International Conference on Machine Learning, Honolulu, Hawaii, USA. PMLR 202, 202

    Learning how to act: making good decisions with machine learning

    Get PDF
    This thesis is about machine learning and statistical approaches to decision making. How can we learn from data to anticipate the consequence of, and optimally select, interventions or actions? Problems such as deciding which medication to prescribe to patients, who should be released on bail, and how much to charge for insurance are ubiquitous, and have far reaching impacts on our lives. There are two fundamental approaches to learning how to act: reinforcement learning, in which an agent directly intervenes in a system and learns from the outcome, and observational causal inference, whereby we seek to infer the outcome of an intervention from observing the system. The goal of this thesis to connect and unify these key approaches. I introduce causal bandit problems: a synthesis that combines causal graphical models, which were developed for observational causal inference, with multi-armed bandit problems, which are a subset of reinforcement learning problems that are simple enough to admit formal analysis. I show that knowledge of the causal structure allows us to transfer information learned about the outcome of one action to predict the outcome of an alternate action, yielding a novel form of structure between bandit arms that cannot be exploited by existing algorithms. I propose an algorithm for causal bandit problems and prove bounds on the simple regret demonstrating it is close to mini-max optimal and better than algorithms that do not use the additional causal information

    Model Selection via Racing

    Get PDF
    Model Selection (MS) is an important aspect of machine learning, as necessitated by the No Free Lunch theorem. Briefly speaking, the task of MS is to identify a subset of models that are optimal in terms of pre-selected optimization criteria. There are many practical applications of MS, such as model parameter tuning, personalized recommendations, A/B testing, etc. Lately, some MS research has focused on trading off exactness of the optimization with somewhat alleviating the computational burden entailed. Recent attempts along this line include metaheuristics optimization, local search-based approaches, sequential model-based methods, portfolio algorithm approaches, and multi-armed bandits. Racing Algorithms (RAs) are an active research area in MS, which trade off some computational cost for a reduced, but acceptable likelihood that the models returned are indeed optimal among the given ensemble of models. All existing RAs in the literature are designed as Single-Objective Racing Algorithm (SORA) for Single-Objective Model Selection (SOMS), where a single optimization criterion is considered for measuring the goodness of models. Moreover, they are offline algorithms in which MS occurs before model deployment and the selected models are optimal in terms of their overall average performances on a validation set of problem instances. This work aims to investigate racing approaches along two distinct directions: Extreme Model Selection (EMS) and Multi-Objective Model Selection (MOMS). In EMS, given a problem instance and a limited computational budget shared among all the candidate models, one is interested in maximizing the final solution quality. In such a setting, MS occurs during model comparison in terms of maximum performance and involves no model validation. EMS is a natural framework for many applications. However, EMS problems remain unaddressed by current racing approaches. In this work, the first RA for EMS, named Max-Race, is developed, so that it optimizes the extreme solution quality by automatically allocating the computational resources among an ensemble of problem solvers for a given problem instance. In Max-Race, significant difference between the extreme performances of any pair of models is statistically inferred via a parametric hypothesis test under the Generalized Pareto Distribution (GPD) assumption. Experimental results have confirmed that Max-Race is capable of identifying the best extreme model with high accuracy and low computational cost. Furthermore, in machine learning, as well as in many real-world applications, a variety of MS problems are multi-objective in nature. MS which simultaneously considers multiple optimization criteria is referred to as MOMS. Under this scheme, a set of Pareto optimal models is sought that reflect a variety of compromises between optimization objectives. So far, MOMS problems have received little attention in the relevant literature. Therefore, this work also develops the first Multi-Objective Racing Algorithm (MORA) for a fixed-budget setting, namely S-Race. S-Race addresses MOMS in the proper sense of Pareto optimality. Its key decision mechanism is the non-parametric sign test, which is employed for inferring pairwise dominance relationships. Moreover, S-Race is able to strictly control the overall probability of falsely eliminating any non-dominated models at a user-specified significance level. Additionally, SPRINT-Race, the first MORA for a fixed-confidence setting, is also developed. In SPRINT-Race, pairwise dominance and non-dominance relationships are established via the Sequential Probability Ratio Test with an Indifference zone. Moreover, the overall probability of falsely eliminating any non-dominated models or mistakenly retaining any dominated models is controlled at a prescribed significance level. Extensive experimental analysis has demonstrated the efficiency and advantages of both S-Race and SPRINT-Race in MOMS

    Sensor Path Planning for Emitter Localization

    Get PDF
    The localization of a radio frequency (RF) emitter is relevant in many military and civilian applications. The recent decade has seen a rapid progress in the development of small and mobile unmanned aerial vehicles (UAVs), which offer a way to perform emitter localization autonomously. The path a UAV travels influences the localization significantly, making path planning an important part of a mobile emitter localization system. The topic of this thesis is path planning for a UAV that uses bearing measurements to localize a stationary emitter. Using a directional antenna, the direction towards the target can be determined by the UAV rotating around its own vertical axis. During this rotation the UAV is required to remain at the same position, which induces a trade-off between movement and measurement that influences the optimal trajectories. This thesis derives a novel path planning algorithm for localizing an emitter with a UAV. It improves the current state of the art by providing a localization with defined accuracy in a shorter amount of time compared to other algorithms in simulations. The algorithm uses the policy rollout principle to perform a nonmyopic planning and to incorporate the uncertainty of the estimation process into its decision. The concept of an action selection algorithm for policy rollout is introduced, which allows the use of existing optimization algorithms to effectively search the action space. Multiple action selection algorithms are compared to optimize the speed of the path planning algorithm. Similarly, to reduce computational demand, an adaptive grid-based localizer has been developed. To evaluate the algorithm an experimental system has been built and the algorithm was tested on this system. Based on initial experiments, the path planning algorithm has been modified, including a minimal distance to the emitter and an outlier detection step. The resulting algorithm shows promising results in experimental flights
    • …
    corecore