39,826 research outputs found

    Risk based Optimization for Improving Emergency Medical Systems

    Get PDF
    In emergency medical systems, arriving at the incident locationa few seconds early can save a human life. Thus, this paper is motivated by the need to reduce the response timeā€“ time taken to arrive at the incident location after receivingthe emergency call ā€” of Emergency Response Vehicles, ERVs(ex: ambulances, fire rescue vehicles) for as many requests as possible. We expect to achieve this primarily by positioning the ā€rightā€ number of ERVs at the ā€rightā€ places and at the ā€rightā€ times. Given the exponentially large action space(with respect to number of ERVs and their placement) and the stochasticity in location and timing of emergency incidents,this problem is computationally challenging. To that end, ourcontributions building on existing data-driven approaches are three fold:1. Based on real world evaluation metrics, we provide a riskbased optimization criterion to learn from past incident data. Instead of minimizing expected response time, we minimize the largest value of response time such that the risk of finding requests that have a higher value is bounded(ex: Only 10% of requests should have a response time greater than 8 minutes).2. We develop a mixed integer linear optimization formulation to learn and compute an allocation from a set of inputrequests while considering the risk criterion.3. To allow for ā€liveā€ reallocation of ambulances, we provide a decomposition method based on Lagrangian Relaxation to significantly reduce the run-time of the optimization formulation.Finally, we provide an exhaustive evaluation on real-world datasets from two asian cities that demonstrates the improvement provided by our approach over current practice and the best known approach from literature

    A Patient Risk Minimization Model for Post-Disaster Medical Delivery Using Unmanned Aircraft Systems

    Get PDF
    The purpose of this research was to develop a novel routing model for delivery of medical supplies using unmanned aircraft systems, improving existing vehicle routing models by using patient risk as the primary minimization variable. The vehicle routing problem is a subset of operational research that utilizes mathematical models to identify the most efficient route between sets of points. Routing studies using unmanned aircraft systems frequently minimize time, distance, or cost as the primary objective and are powerful decision-making tools for routine delivery operations. However, the fields of emergency triage and disaster response are focused on identifying patient injury severity and providing the necessary care. This study addresses the misalignment of priorities between existing routing models and the emergency response industry by developing an optimization model with injury severity to measure patient risk. Model inputs for this study include vehicle performance variables, environmental variables, and patient injury variables. These inputs are used to construct a multi-objective mixed-integer nonlinear programming (MOMINLP) optimization model with the primary objective of minimizing total risk for a set of patients. The model includes a secondary aim of route time minimization to ensure optimal fleet deployment but is constrained by the risk minimization value identified in the first objective. This multi-objective design ensures risk minimization will not be sacrificed for route efficiency while still ensuring routes are completed as expeditiously as possible. The theoretical foundation for quantifying patient risk is based on mass casualty triage decision-making systems, specifically the emergency severity index, which focuses on sorting patients into categories based on the type of injury and risk of deterioration if additional assistance is not provided. Each level of the Emergency Severity Index is assigned a numerical value, allowing the model to search for a route that prioritizes injury criticality, subject to the appropriate vehicle and environmental constraints. An initial solution was obtained using stochastic patient data and historical environmental data validated by a Monte Carlo simulation, followed by a sensitivity analysis to evaluate the generalizability and reliability of the model. Multiple what-if scenarios were built to conduct the sensitivity analysis. Each scenario contained a different set of variables to demonstrate model generalizability for various vehicle limitations, environmental conditions, and different scales of disaster response. The primary contribution of this study is a flexible and generalizable optimization model that disaster planning organizations can use to simulate potential response capabilities with unmanned aircraft. The model also improves upon existing optimization tools by including environmental variables and patient risk inputs, ensuring the optimal solution is useful as a real-time disaster response tool

    Safety and security management through an integrated multidisciplinary model and related integrated technological framework

    Get PDF
    The purpose of this paper is to illustrate a multidisciplinary model for safety and security management (IMMSSM) which can be implemented by means of a suitable Integrated Technological System Framework (ITSF) that can be based on Internet of Things (IoT)/Internet of Everything (IoE), showing also the significant role played by the integration of the elements that compose the model itself, thanks to a proper genetic algorithm studied for the specific context

    Research Directions in Information Systems for Humanitarian Logistics

    Get PDF
    This article systematically reviews the literature on using IT (Information Technology) in humanitarian logistics focusing on disaster relief operations. We first discuss problems in humanitarian relief logistics. We then identify the stage and disaster type for each article as well as the articleā€™s research methodology and research contribution. Finally, we identify potential future research directions

    Physiology-Aware Rural Ambulance Routing

    Full text link
    In emergency patient transport from rural medical facility to center tertiary hospital, real-time monitoring of the patient in the ambulance by a physician expert at the tertiary center is crucial. While telemetry healthcare services using mobile networks may enable remote real-time monitoring of transported patients, physiologic measures and tracking are at least as important and requires the existence of high-fidelity communication coverage. However, the wireless networks along the roads especially in rural areas can range from 4G to low-speed 2G, some parts with communication breakage. From a patient care perspective, transport during critical illness can make route selection patient state dependent. Prompt decisions with the relative advantage of a longer more secure bandwidth route versus a shorter, more rapid transport route but with less secure bandwidth must be made. The trade-off between route selection and the quality of wireless communication is an important optimization problem which unfortunately has remained unaddressed by prior work. In this paper, we propose a novel physiology-aware route scheduling approach for emergency ambulance transport of rural patients with acute, high risk diseases in need of continuous remote monitoring. We mathematically model the problem into an NP-hard graph theory problem, and approximate a solution based on a trade-off between communication coverage and shortest path. We profile communication along two major routes in a large rural hospital settings in Illinois, and use the traces to manifest the concept. Further, we design our algorithms and run preliminary experiments for scalability analysis. We believe that our scheduling techniques can become a compelling aid that enables an always-connected remote monitoring system in emergency patient transfer scenarios aimed to prevent morbidity and mortality with early diagnosis treatment.Comment: 6 pages, The Fifth IEEE International Conference on Healthcare Informatics (ICHI 2017), Park City, Utah, 201

    Ambulance Emergency Response Optimization in Developing Countries

    Full text link
    The lack of emergency medical transportation is viewed as the main barrier to the access of emergency medical care in low and middle-income countries (LMICs). In this paper, we present a robust optimization approach to optimize both the location and routing of emergency response vehicles, accounting for uncertainty in travel times and spatial demand characteristic of LMICs. We traveled to Dhaka, Bangladesh, the sixth largest and third most densely populated city in the world, to conduct field research resulting in the collection of two unique datasets that inform our approach. This data is leveraged to develop machine learning methodologies to estimate demand for emergency medical services in a LMIC setting and to predict the travel time between any two locations in the road network for different times of day and days of the week. We combine our robust optimization and machine learning frameworks with real data to provide an in-depth investigation into three policy-related questions. First, we demonstrate that outpost locations optimized for weekday rush hour lead to good performance for all times of day and days of the week. Second, we find that significant improvements in emergency response times can be achieved by re-locating a small number of outposts and that the performance of the current system could be replicated using only 30% of the resources. Lastly, we show that a fleet of small motorcycle-based ambulances has the potential to significantly outperform traditional ambulance vans. In particular, they are able to capture three times more demand while reducing the median response time by 42% due to increased routing flexibility offered by nimble vehicles on a larger road network. Our results provide practical insights for emergency response optimization that can be leveraged by hospital-based and private ambulance providers in Dhaka and other urban centers in LMICs

    Taxonomic classification of planning decisions in health care: a review of the state of the art in OR/MS

    Get PDF
    We provide a structured overview of the typical decisions to be made in resource capacity planning and control in health care, and a review of relevant OR/MS articles for each planning decision. The contribution of this paper is twofold. First, to position the planning decisions, a taxonomy is presented. This taxonomy provides health care managers and OR/MS researchers with a method to identify, break down and classify planning and control decisions. Second, following the taxonomy, for six health care services, we provide an exhaustive specification of planning and control decisions in resource capacity planning and control. For each planning and control decision, we structurally review the key OR/MS articles and the OR/MS methods and techniques that are applied in the literature to support decision making
    • ā€¦
    corecore