1,218 research outputs found

    Risk-Averse Model Uncertainty for Distributionally Robust Safe Reinforcement Learning

    Full text link
    Many real-world domains require safe decision making in uncertain environments. In this work, we introduce a deep reinforcement learning framework for approaching this important problem. We consider a distribution over transition models, and apply a risk-averse perspective towards model uncertainty through the use of coherent distortion risk measures. We provide robustness guarantees for this framework by showing it is equivalent to a specific class of distributionally robust safe reinforcement learning problems. Unlike existing approaches to robustness in deep reinforcement learning, however, our formulation does not involve minimax optimization. This leads to an efficient, model-free implementation of our approach that only requires standard data collection from a single training environment. In experiments on continuous control tasks with safety constraints, we demonstrate that our framework produces robust performance and safety at deployment time across a range of perturbed test environments.Comment: 37th Conference on Neural Information Processing Systems (NeurIPS 2023

    One Risk to Rule Them All: Addressing Distributional Shift in Offline Reinforcement Learning via Risk-Aversion

    Full text link
    Offline reinforcement learning (RL) is suitable for safety-critical domains where online exploration is not feasible. In such domains, decision-making should take into consideration the risk of catastrophic outcomes. In other words, decision-making should be risk-averse. An additional challenge of offline RL is avoiding distributional shift, i.e. ensuring that state-action pairs visited by the policy remain near those in the dataset. Previous works on risk in offline RL combine offline RL techniques (to avoid distributional shift), with risk-sensitive RL algorithms (to achieve risk-aversion). In this work, we propose risk-aversion as a mechanism to jointly address both of these issues. We propose a model-based approach, and use an ensemble of models to estimate epistemic uncertainty, in addition to aleatoric uncertainty. We train a policy that is risk-averse, and avoids high uncertainty actions. Risk-aversion to epistemic uncertainty prevents distributional shift, as areas not covered by the dataset have high epistemic uncertainty. Risk-aversion to aleatoric uncertainty discourages actions that are inherently risky due to environment stochasticity. Thus, by only introducing risk-aversion, we avoid distributional shift in addition to achieving risk-aversion to aleatoric risk. Our algorithm, 1R2R, achieves strong performance on deterministic benchmarks, and outperforms existing approaches for risk-sensitive objectives in stochastic domains

    SAAC: Safe Reinforcement Learning as an Adversarial Game of Actor-Critics

    Full text link
    Although Reinforcement Learning (RL) is effective for sequential decision-making problems under uncertainty, it still fails to thrive in real-world systems where risk or safety is a binding constraint. In this paper, we formulate the RL problem with safety constraints as a non-zero-sum game. While deployed with maximum entropy RL, this formulation leads to a safe adversarially guided soft actor-critic framework, called SAAC. In SAAC, the adversary aims to break the safety constraint while the RL agent aims to maximize the constrained value function given the adversary's policy. The safety constraint on the agent's value function manifests only as a repulsion term between the agent's and the adversary's policies. Unlike previous approaches, SAAC can address different safety criteria such as safe exploration, mean-variance risk sensitivity, and CVaR-like coherent risk sensitivity. We illustrate the design of the adversary for these constraints. Then, in each of these variations, we show the agent differentiates itself from the adversary's unsafe actions in addition to learning to solve the task. Finally, for challenging continuous control tasks, we demonstrate that SAAC achieves faster convergence, better efficiency, and fewer failures to satisfy the safety constraints than risk-averse distributional RL and risk-neutral soft actor-critic algorithms
    corecore