5,081 research outputs found

    Connectivity analysis in clustered wireless sensor networks powered by solar energy

    Get PDF
    ©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Emerging 5G communication paradigms, such as machine-type communication, have triggered an explosion in ad-hoc applications that require connectivity among the nodes of wireless networks. Ensuring a reliable network operation under fading conditions is not straightforward, as the transmission schemes and the network topology, i.e., uniform or clustered deployments, affect the performance and should be taken into account. Moreover, as the number of nodes increases, exploiting natural energy sources and wireless energy harvesting (WEH) could be the key to the elimination of maintenance costs while also boosting immensely the network lifetime. In this way, zero-energy wireless-powered sensor networks (WPSNs) could be achieved, if all components are powered by green sources. Hence, designing accurate mathematical models that capture the network behavior under these circumstances is necessary to provide a deeper comprehension of such networks. In this paper, we provide an analytical model for the connectivity in a large-scale zero-energy clustered WPSN under two common transmission schemes, namely, unicast and broadcast. The sensors are WEH-enabled, while the network components are solar-powered and employ a novel energy allocation algorithm. In our results, we evaluate the tradeoffs among the various scenarios via extensive simulations and identify the conditions that yield a fully connected zero-energy WPSN.Peer ReviewedPostprint (author's final draft

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008

    Bayesian fusion algorithm for inferring trust in wireless sensor networks

    Full text link
    This paper introduces a new Bayesian fusion algorithm to combine more than one trust component (data trust and communication trust) to infer the overall trust between nodes. This research work proposes that one trust component is not enough when deciding on whether or not to trust a specific node in a wireless sensor network. This paper discusses and analyses the results from the communication trust component (binary) and the data trust component (continuous) and proves that either component by itself, can mislead the network and eventually cause a total breakdown of the network. As a result of this, new algorithms are needed to combine more than one trust component to infer the overall trust. The proposed algorithm is simple and generic as it allows trust components to be added and deleted easily. Simulation results demonstrate that a node is highly trustworthy provided that both trust components simultaneously confirm its trustworthiness and conversely, a node is highly untrustworthy if its untrustworthiness is asserted by both components. © 2010 ACADEMY PUBLISHER

    Solving Complex Data-Streaming Problems by Applying Economic-Based Principles to Mobile and Wireless Resource Constraint Networks

    Get PDF
    The applications that employ mobile networks depend on the continuous input of reliable data collected by sensing devices. A common application is in military systems, where as an example, drones that are sent on a mission can communicate with each other, exchange sensed data, and autonomously make decisions. Although the mobility of nodes enhances the network coverage, connectivity, and scalability, it introduces pressing issues in data reliability compounded by restrictions in sensor energy resources, as well as limitations in available memory, and computational capacity. This dissertation investigates the issues that mobile networks encounter in providing reliable data. Our research goal is to develop a diverse set of novel data handling solutions for mobile sensor systems providing reliable data by considering the dynamic trajectory behavior relationships among nodes, and the constraints inherent to mobile nodes. We study the applicability of economic models, which are simplified versions of real-world situations that let us observe and make predictions about economic behavior, to our domain. First, we develop a data cleaning method by introducing the notion of “beta,” a measure that quantifies the risk associated with trusting the accuracy of the data provided by a node based on trajectory behavior similarity. Next, we study the reconstruction of highly incomplete data streams. Our method determines the level of trust in data accuracy by assigning variable “weights” considering the quality and the origin of data. Thirdly, we design a behavior-based data reduction and trend prediction technique using Japanese candlesticks. This method reduces the dataset to 5% of its original size while preserving the behavioral patterns. Finally, we develop a data cleaning distribution method for energy-harvesting networks. Based on the Leontief Input-Output model, this method increases the data that is run through cleaning and the network uptime

    A Survey of Provenance Leveraged Trust in Wireless Sensor Networks

    Get PDF
    A wireless sensor network is a collection of self-organized sensor nodes. WSNs have many challenges such as lack of a centralized network administration, absence of infrastructure, low data transmission capacity, low bandwidth, mobility, lack of connectivity, limited power supply and dynamic network topology. Due to this vulnerable nature, WSNs need a trust architecture to keep the quality of the network data high for a longer time. In this work, we aim to survey the proposed trust architectures for WSNs. Provenance can play a key role in assessing trust in these architectures. However not many research have leveraged provenance for trust in WSNs. We also aim to point out this gap in the field and encourage researchers to invest in this topic. To our knowledge our work is unique and provenance leveraged trust work in WSNs has not been surveyed before. Keywords:Provenance, Trust, Wireless Sensor Networks  

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions

    Incentive Mechanisms for Participatory Sensing: Survey and Research Challenges

    Full text link
    Participatory sensing is a powerful paradigm which takes advantage of smartphones to collect and analyze data beyond the scale of what was previously possible. Given that participatory sensing systems rely completely on the users' willingness to submit up-to-date and accurate information, it is paramount to effectively incentivize users' active and reliable participation. In this paper, we survey existing literature on incentive mechanisms for participatory sensing systems. In particular, we present a taxonomy of existing incentive mechanisms for participatory sensing systems, which are subsequently discussed in depth by comparing and contrasting different approaches. Finally, we discuss an agenda of open research challenges in incentivizing users in participatory sensing.Comment: Updated version, 4/25/201
    • …
    corecore