372,750 research outputs found

    Socio-hydrological modelling: a review asking “why, what and how?”

    Get PDF
    Interactions between humans and the environment are occurring on a scale that has never previously been seen; the scale of human interaction with the water cycle, along with the coupling present between social and hydrological systems, means that decisions that impact water also impact people. Models are often used to assist in decision-making regarding hydrological systems, and so in order for effective decisions to be made regarding water resource management, these interactions and feedbacks should be accounted for in models used to analyse systems in which water and humans interact. This paper reviews literature surrounding aspects of socio-hydrological modelling. It begins with background information regarding the current state of socio-hydrology as a discipline, before covering reasons for modelling and potential applications. Some important concepts that underlie socio-hydrological modelling efforts are then discussed, including ways of viewing socio-hydrological systems, space and time in modelling, complexity, data and model conceptualisation. Several modelling approaches are described, the stages in their development detailed and their applicability to socio-hydrological cases discussed. Gaps in research are then highlighted to guide directions for future research. The review of literature suggests that the nature of socio-hydrological study, being interdisciplinary, focusing on complex interactions between human and natural systems, and dealing with long horizons, is such that modelling will always present a challenge; it is, however, the task of the modeller to use the wide range of tools afforded to them to overcome these challenges as much as possible. The focus in socio-hydrology is on understanding the human–water system in a holistic sense, which differs from the problem solving focus of other water management fields, and as such models in socio-hydrology should be developed with a view to gaining new insight into these dynamics. There is an essential choice that socio-hydrological modellers face in deciding between representing individual system processes or viewing the system from a more abstracted level and modelling it as such; using these different approaches has implications for model development, applicability and the insight that they are capable of giving, and so the decision regarding how to model the system requires thorough consideration of, among other things, the nature of understanding that is sought

    Probabilistic methods for seasonal forecasting in a changing climate: Cox-type regression models

    Get PDF
    For climate risk management, cumulative distribution functions (CDFs) are an important source of information. They are ideally suited to compare probabilistic forecasts of primary (e.g. rainfall) or secondary data (e.g. crop yields). Summarised as CDFs, such forecasts allow an easy quantitative assessment of possible, alternative actions. Although the degree of uncertainty associated with CDF estimation could influence decisions, such information is rarely provided. Hence, we propose Cox-type regression models (CRMs) as a statistical framework for making inferences on CDFs in climate science. CRMs were designed for modelling probability distributions rather than just mean or median values. This makes the approach appealing for risk assessments where probabilities of extremes are often more informative than central tendency measures. CRMs are semi-parametric approaches originally designed for modelling risks arising from time-to-event data. Here we extend this original concept to other positive variables of interest beyond the time domain. We also provide tools for estimating CDFs and surrounding uncertainty envelopes from empirical data. These statistical techniques intrinsically account for non-stationarities in time series that might be the result of climate change. This feature makes CRMs attractive candidates to investigate the feasibility of developing rigorous global circulation model (GCM)-CRM interfaces for provision of user-relevant forecasts. To demonstrate the applicability of CRMs, we present two examples for El Niño/Southern Oscillation (ENSO)-based forecasts: the onset date of the wet season (Cairns, Australia) and total wet season rainfall (Quixeramobim, Brazil). This study emphasises the methodological aspects of CRMs rather than discussing merits or limitations of the ENSO-based predictor

    Eliciting Stakeholders’ Requirements for Future Energy Systems: A Case Study of Heat Decarbonisation in the UK

    Get PDF
    It is a truism that whole energy system models underpin the development of policies for energy system decarbonisation. However, recent reviews have thrown doubt on the appropriateness of such models for addressing the multiple goals for future energy systems, in the face of emergent real-world complexity and the evolution of stakeholder’s priorities. Without an understanding of the changing priorities of policy makers and expectations of stakeholders for future systems, system objectives and constraints are likely to be ill-defined, and there is a risk that models may be inadvertently instrumentalised. Adopting a system architecture perspective, the authors have undertaken a three-year programme of research to explore strategies for decarbonising heat in the UK, with interaction with and elicitation of needs from stakeholders at its heart. This paper presents the procedure, methods, and results of an exercise in which experts from stakeholder organisations across the energy system were interviewed. Analysis of interview data reveals two broad approaches to heat decarbonisation which can be defined as either adaptive or transformative. Specific insights gained from these interviews enabled our modelling teams to refocus their work for exploration with a wider circle of stakeholders. Results suggests that this iterative approach to formalising model-policy interaction could improve the transparency and legitimacy of modelling and enhance its impact on policy making

    Effect of flow pattern at pipe bends on corrosion behaviour of low carbon steek and its challenges

    Get PDF
    Recent design work regarding seawater flow lines has emphasized the need to identify, develop, and verify critical relationships between corrosion prediction and flow regime mechanisms at pipe bend. In practice this often reduces to an pragmatic interpretation of the effects of corrosion mechanisms at pipe bends. Most importantly the identification of positions or sites, within the internal surface contact areas where the maximum corrosion stimulus may be expected to occur, thereby allowing better understanding, mitigation, monitoring and corrosion control over the life cycle. Some case histories have been reviewed in this context, and the interaction between corrosion mechanisms and flow patterns closely determined, and in some cases correlated. Since the actual relationships are complex, it was determined that a risk based decision making process using selected ‘what’ if corrosion analyses linked to ‘what if’ flow assurance analyses was the best way forward. Using this in methodology, and pertinent field data exchange, it is postulated that significant improvements in corrosion prediction can be made. This paper outlines the approach used and shows how related corrosion modelling software data such as that available from corrosion models Norsok M5006, and Cassandra to parallel computational flow modelling in a targeted manner can generate very noteworthy results, and considerably more viable trends for corrosion control guidance. It is postulated that the normally associated lack of agreement between corrosion modelling and field experience, is more likely due to inadequate consideration of corrosion stimulating flow regime data, rather than limitations of the corrosion modelling. Applications of flow visualization studies as well as computations with the k-ε model of turbulence have identified flow features and regions where metal loss is a maximu

    Targeted youth support pathfinders : interim evaluation

    Get PDF

    The match between climate services demands and Earth System Models supplies

    Get PDF
    Earth System Models (ESM) are key ingredients of many of the climate services that are currently being developed and delivered. However, ESMs have more applications than the provision of climate services, and similarly many climate services use more sources of information than ESMs. This discussion paper elaborates on dilemmas that are evident at the interface between ESMs and climate services, in particular: (a) purposes of the models versus service development, (b) gap between the spatial and temporal scales of the models versus the scales needed in applications, and (c) Tailoring climate model results to real-world applications. A continued and broad-minded dialogue between the ESM developers and climate services providers’ communities is needed to improve both the optimal use and direction of ESM development and climate service development. We put forward considerations to improve this dialogue between the communities developing ESMs and climate services, in order to increase the mutual benefit that enhanced understanding of prospects and limitations of ESMs and climate services will bring.This work and its contributors (B. van den Hurk, C. Hewitt, J. Bessembinder, F. Doblas-Reyes, R. Döscher) were funded by the Horizon 2020 Framework Programme of the European Union: Project ref. 689029 (Climateurope project). The co-author and editor of the journal states that she was not involved in the review process of the paper.Peer ReviewedPostprint (published version

    Exploring pathways for sustainable water management in river deltas in a changing environment

    Get PDF
    Exploring adaptation pathways into an uncertain future can support decisionmaking in achieving sustainable water management in a changing environment. Our objective is to develop and test a method to identify such pathways by including dynamics from natural variability and the interaction between the water system and society. Present planning studies on long-term water management often use a few plausible futures for one or two projection years, ignoring the dynamic aspect of adaptation through the interaction between the water system and society. Our approach is to explore pathways using multiple realisations of transient scenarios with an Integrated Assessment Meta Model (IAMM). This paper presents the first application of the method using a hypothetical case study. The case study shows how to explore and evaluate adaptation pathways. With the pathways it is possible to identify opportunities, threats, timing and sequence of policy options, which can be used by policymakers to develop water management roadmaps into the future. By including the dynamics between the water system and society, the influence of uncertainties in both systems becomes clearer. The results show, among others, that climate variability rather than climate change appears to be important for taking decisions in water management

    Transmission parameters of the 2001 foot and mouth epidemic in Great Britain.

    Get PDF
    Despite intensive ongoing research, key aspects of the spatial-temporal evolution of the 2001 foot and mouth disease (FMD) epidemic in Great Britain (GB) remain unexplained. Here we develop a Markov Chain Monte Carlo (MCMC) method for estimating epidemiological parameters of the 2001 outbreak for a range of simple transmission models. We make the simplifying assumption that infectious farms were completely observed in 2001, equivalent to assuming that farms that were proactively culled but not diagnosed with FMD were not infectious, even if some were infected. We estimate how transmission parameters varied through time, highlighting the impact of the control measures on the progression of the epidemic. We demonstrate statistically significant evidence for assortative contact patterns between animals of the same species. Predictive risk maps of the transmission potential in different geographic areas of GB are presented for the fitted models
    corecore