2,862 research outputs found

    Photon-actuated multiplex switch development

    Get PDF
    Photon actuated solid state electronic switch for multiplexing low level analog signal

    Optimization study of high power static inverters and converters Final report

    Get PDF
    Optimization study and basic performance characteristics for conceptual designs for high power static inverter

    NASA micromin computer Monthly progress letter, Jan. 1967

    Get PDF
    Microminiature circuit development for flight control computer

    Review and Characterization of Gallium Nitride Power Devices

    Get PDF
    Gallium Nitride (GaN) power devices are an emerging technology that have only recently become available commercially. This new technology enables the design of converters at higher frequencies and efficiencies than those achievable with conventional Si devices. This thesis reviews the characteristics and commercial status of both vertical and lateral GaN power devices from the user perspective, providing the background necessary to understand the significance of these recent developments. Additionally, the challenges encountered in GaN-based converter design are considered, such as the consequences of faster switching on gate driver design and board layout. Other issues include the unique reverse conduction behavior, dynamic on-resistance, breakdown mechanisms, thermal design, device availability, and reliability qualification. Static and dynamic characterization was then performed across the full current, voltage, and temperature range of this device to enable effective GaN-based converter design. Static testing was performed with a curve tracer and precision impedance analyzer. A double pulse test setup was constructed and used to measure switching loss and time at the fastest achievable switching speed, and the subsequent overvoltages due to the fast switching were characterized. The results were also analyzed to characterize the effects of cross-talk in the active and synchronous devices of a phase-leg topology with enhancement-mode GaN HFETs. Based on these results and analysis, an accurate loss model was developed for the device under test. Based on analysis of these characterization results, a simplified model was developed to describe the overall switching behavior and some unique features of the device. The consequences of the Miller effect during the turn-on transient were studied to show that no Miller plateau occurs, but rather a decreased gate voltage slope, followed by a sharp drop. The significance of this distinction is derived and explained. GaN performance at elevated temperature was also studied, because turn-on time increases significantly with temperature, and turn-on losses increase as a result. Based on this relationship, a temperature-dependent turn-on model and a linear scaling factor was proposed for estimating turn-on loss in e-mode GaN HFETs

    Low-power/high-gain flexible complementary circuits based on printed organic electrochemical transistors

    Get PDF
    The ability to accurately extract low-amplitude voltage signals is crucial in several fields, ranging from single-use diagnostics and medical technology to robotics and the Internet of Things. The organic electrochemical transistor, which features large transconductance values at low operation voltages, is ideal for monitoring small signals. Its large transconductance translates small gate voltage variations into significant changes in the drain current. However, a current-to-voltage conversion is further needed to allow proper data acquisition and signal processing. Low power consumption, high amplification, and manufacturability on flexible and low-cost carriers are also crucial and highly anticipated for targeted applications. Here, we report low-power and high-gain flexible circuits based on printed complementary organic electrochemical transistors (OECTs). We leverage the low threshold voltage of both p-type and n-type enhancement-mode OECTs to develop complementary voltage amplifiers that can sense voltages as low as 100 μ\muV, with gains of 30.4 dB and at a power consumption < 2.7 μ\muW (single-stage amplifier). At the optimal operating conditions, the voltage gain normalized to power consumption reaches 169 dB/μ\muW, which is > 50 times larger than state-of-the-art OECT-based amplifiers. In a two-stage configuration, the complementary voltage amplifiers reach a DC voltage gain of 193 V/V, which is the highest among emerging CMOS-like technologies operating at supply voltages below 1 volt. Our findings demonstrate that flexible complementary circuits based on printed OECTs define a power-efficient platform for sensing and amplifying low-amplitude voltage signals in several emerging beyond-silicon applications

    Design and Test of a Gate Driver with Variable Drive and Self-Test Capability Implemented in a Silicon Carbide CMOS Process

    Get PDF
    Discrete silicon carbide (SiC) power devices have long demonstrated abilities that outpace those of standard silicon (Si) parts. The improved physical characteristics allow for faster switching, lower on-resistance, and temperature performance. The capabilities unleashed by these devices allow for higher efficiency switch-mode converters as well as the advance of power electronics into new high-temperature regimes previously unimaginable with silicon devices. While SiC power devices have reached a relative level of maturity, recent work has pushed the temperature boundaries of control electronics further with silicon carbide integrated circuits. The primary requirement to ensure rapid switching of power MOSFETs was a gate drive buffer capable of taking a control signal and driving the MOSFET gate with high current required. In this work, the first integrated SiC CMOS gate driver was developed in a 1.2 μm SiC CMOS process to drive a SiC power MOSFET. The driver was designed for close integration inside a power module and exposure to high temperatures. The drive strength of the gate driver was controllable to allow for managing power MOSFET switching speed and potential drain voltage overshoot. Output transistor layouts were optimized using custom Python software in conjunction with existing design tool resources. A wafer-level test system was developed to identify yield issues in the gate driver output transistors. This method allowed for qualitative and quantitative evaluation of transistor leakage while the system was under probe. Wafer-level testing and results are presented. The gate driver was tested under high temperature operation up to 530 degrees celsius. An integrated module was built and tested to illustrate the capability of the gate driver to control a power MOSFET under load. The adjustable drive strength feature was successfully demonstrated

    A 6.7-GHz Active Gate Driver for GaN FETs to Combat Overshoot, Ringing, and EMI

    Get PDF
    Active gate driving has been demonstrated to beneficially shape switching waveforms in Si-and SiC-based power converters. For faster GaN power devices with sub-10-ns switching transients, however, reported variable gate driving has so far been limited to altering a single drive parameter once per switching event, either during or outside of the transient. This paper demonstrates a gate driver with a timing resolution and range of output resistance levels that surpass those of existing gate drivers or arbitrary waveform generators. It is shown to permit active gate driving with a bandwidth that is high enough to shape a GaN switching during the transient. The programmable gate driver has integrated high-speed memory, control logic, and multiple parallel output stages. During switching transients, the gate driver can activate a near-arbitrary sequence of pull-up or pull-down output resistances between 0.12 and 64 A hybrid of clocked and asynchronous control logic with 150-ps delay elements achieves an effective resistance update rate of 6.7 GHz during switching events. This active gate driver is evaluated in a 1-MHz bridge-leg converter using EPC2015 GaN FETs. The results show that aggressive manipulation of the gate-drive resistance at sub-nanosecond resolutions can profile gate waveforms of the GaN FET, thereby beneficially shaping the switch-node voltage waveform in the power circuit. Examples of open-loop active gate driving are demonstrated that maintain the low switching loss of constant-strength gate driving, while reducing overshoot, oscillation, and EMI-generating high-frequency spectral content
    corecore