939 research outputs found

    Direct sequence spread spectrum based PWM strategy for harmonic reduction and communication

    Get PDF
    Switched mode power supplies (SMPSs) are essential components in many applications, and electromagnetic interference is an important consideration in the SMPS design. Spread spectrum based PWM strategies have been used in SMPS designs to reduce the switching harmonics. This paper proposes a novel method to integrate a communication function into spread spectrum based PWM strategy without extra hardware costs. Direct sequence spread spectrum (DSSS) and phase shift keying (PSK) data modulation are employed to the PWM of the SMPS, so that it has reduced switching harmonics and the input and output power line voltage ripples contain data. A data demodulation algorithm has been developed for receivers, and code division multiple access (CDMA) concept is employed as communication method for a system with multiple SMPSs. The proposed method has been implemented in both Buck and Boost converters. The experimental results validated the proposed DSSS based PWM strategy for both harmonic reduction and communication

    Power conversion and signal transmission integration method based on dual modulation of DC-DC converters

    Get PDF
    For the development of communication systems such as Internet of Things, integrating communication with power supplies is an attractive solution to reduce supply cost. This paper presents a novel method of power/signal dual modulation (PSDM), by which signal transmission is integrated with power conversion. This method takes advantage of the intrinsic ripple initiated in switch mode power supplies as signal carriers, by which cost-effective communications can be realized. The principles of PSDM are discussed, and two basic dual modulation methods (specifically PWM/FSK and PWM/PSK) are concluded. The key points of designing a PWM/FSK system, including topology selection, carrier shape, and carrier frequency, are discussed to provide theoretical guidelines. A practical signal modulation-demodulation method is given, and a prototype system provides experimental results to verify the effectiveness of the proposed solution

    Taking advantage of the sum of the light in outphasing technique for visible light communication transmitter

    Get PDF
    Visible Light Communication (VLC) takes advantage of the widespread use of the LEDs, and by modifying the driver stage, the LEDs are capable of lighting and transmitting information. One of the main drawbacks is the low power efficiency due to the modification of the LED driver stage in order to add the communication capability. Most of the research work related to VLC is towards the communication task, whereas there is a limited work about the improvement on the power efficiency. This paper proposes a high efficiency LED driver for VLC working as a transmitter based on the outphasing technique. This technique is used also in RF communications and increases the efficiency of the amplifiers. The proposed transmitter is made up of two switching-mode power amplifiers that reproduce the signals required for the outphasing technique and a DC/DC converter that biases the LEDs. The proposal exploits the light and, instead of being added electrically, the signals are added in their light form, which leads to a reduction in the complexity of the design. As experimental results, a transmitter was built of two Class E amplifiers reproducing a 16-QAM modulation, achieving a signal-generation efficiency of 78% and an overall efficiency of 92

    Design of a 350 kW DC/DC Converter in 1200-V SiC Module Technology for Automotive Component Testing

    Get PDF
    In this paper, the design and implementation of a DC/DC converter for automotive component testing with state-of-the art performance is described. The converter is the core of a battery emulator for the characterization and development of automotive batteries, electronic chargers, traction inverters, DC-DC converters, E-motors and E-axles. Cutting edge performance, flexibility and compactness are obtained by exploiting 1200-V SiC modules, high switching frequency, planar transformer technology, suitable topology solutions and fast digital control strategies. The implemented system is a liquid-cooled, bidirectional converter with galvanic isolation capable of 350 kW continuous output power, output voltage range 48-1000 V, continuous output current up to 800 A (1600 A peak), voltage/current ramp-up time below 10/2 ms and 0.1% current/voltage accuracy. The entire instrument is implemented in a standard full-height 19-inch rack cabinet

    Analysis, Design and Control of a Modular Full-Si Converter Concept for Electric Vehicle Ultra-Fast Charging

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Co-design of Security Aware Power System Distribution Architecture as Cyber Physical System

    Get PDF
    The modern smart grid would involve deep integration between measurement nodes, communication systems, artificial intelligence, power electronics and distributed resources. On one hand, this type of integration can dramatically improve the grid performance and efficiency, but on the other, it can also introduce new types of vulnerabilities to the grid. To obtain the best performance, while minimizing the risk of vulnerabilities, the physical power system must be designed as a security aware system. In this dissertation, an interoperability and communication framework for microgrid control and Cyber Physical system enhancements is designed and implemented taking into account cyber and physical security aspects. The proposed data-centric interoperability layer provides a common data bus and a resilient control network for seamless integration of distributed energy resources. In addition, a synchronized measurement network and advanced metering infrastructure were developed to provide real-time monitoring for active distribution networks. A hybrid hardware/software testbed environment was developed to represent the smart grid as a cyber-physical system through hardware and software in the loop simulation methods. In addition it provides a flexible interface for remote integration and experimentation of attack scenarios. The work in this dissertation utilizes communication technologies to enhance the performance of the DC microgrids and distribution networks by extending the application of the GPS synchronization to the DC Networks. GPS synchronization allows the operation of distributed DC-DC converters as an interleaved converters system. Along with the GPS synchronization, carrier extraction synchronization technique was developed to improve the system’s security and reliability in the case of GPS signal spoofing or jamming. To improve the integration of the microgrid with the utility system, new synchronization and islanding detection algorithms were developed. The developed algorithms overcome the problem of SCADA and PMU based islanding detection methods such as communication failure and frequency stability. In addition, a real-time energy management system with online optimization was developed to manage the energy resources within the microgrid. The security and privacy were also addressed in both the cyber and physical levels. For the physical design, two techniques were developed to address the physical privacy issues by changing the current and electromagnetic signature. For the cyber level, a security mechanism for IEC 61850 GOOSE messages was developed to address the security shortcomings in the standard

    A New MMC Topology Which Decreases the Sub Module Voltage Fluctuations at Lower Switching Frequencies and Improves Converter Efficiency

    Get PDF
    Modular Multi-level inverters (MMCs) are becoming more common because of their suitability for applications in smart grids and multi-terminal HVDC transmission networks. The comparative study between the two classic topologies of MMC (AC side cascaded and DC side cascaded topologies) indicates some disadvantages which can affect their performance. The sub module voltage ripple and switching losses are one of the main issues and the reason for the appearance of the circulating current is sub module capacitor voltage ripple. Hence, the sub module capacitor needs to be large enough to constrain the voltage ripple when operating at lower switching frequencies. However, this is prohibitively uneconomical for the high voltage applications. There is always a trade off in MMC design between the switching frequency and sub module voltage ripple

    Integration of Sodium Metal Halide Energy Storage Systems in Telecommunication Microgrids: Performance Analysis of DC-DC Converter Topologies

    Get PDF
    The present paper proposes an integrated method for modelling and designing Energy Storage Systems (ESSs) based on Sodium Metal Halide Batteries (SMHBs). The implementation of the proposed methodology for designing an SMHB-ESS used for supporting telecommunication DC microgrids is presented. The motivation concerning this specific case study is the role assumed by battery technology in improving the reliability and robustness of telecommunication DC microgrids. In this context, the SMHBs, due to their operative temperature, dynamic power response and robustness against cell breakdown, represent one of the most suitable technologies, mainly when challenging environmental conditions occur. The motivation for implementing an integrated design approach is the non-linear behaviour of SMHBs, which requires a high accuracy in battery modelling and in managing DC-DC interfacing for full SMHB capacity exploitation. To highlight the advantages of this novel approach, a comparison between the SMHB- ESS designs considering, as the DC-DC converter, a buck–boost topology actually implemented in the commercial systems and a Dual-Active-Bridge (DAB) converter, specifically developed for this kind of battery, was investigated. Considering different operating conditions in a specific DC telecommunication microgrid, the designed configurations of SMHB ESSs were simulated. Finally, a comparison of simulation results is presented and discussed, highlighting that DABs, despite their greater complexity compared to buck–boost converters, present advantages in terms of flexibility, dynamic performances and efficiency, increasing the available SMHB capacity by 10%

    Single-phase grid connected inverter with DC link voltage modulation

    Get PDF

    Bidirectional Three-Phase AC-DC Power Conversion Using DC-DC Converters and a Three-Phase Unfolder

    Get PDF
    Strategic use of energy storage systems alleviates imbalance between energy generation and consumption. Battery storage of various chemistries is favorable for its relatively high energy density and high charge and discharge rates. Battery voltage is in dc, while the distribution of electricity is still predominantly in ac. To effectively harness the battery energy, a dc-ac inverter is required. A conventional inverter contains two high-frequency switching stages. The battery-interfacing stage provides galvanic isolation and switches at high frequency to minimize the isolation transformer size. The grid-interfacing stage also operates at high frequency to obtain sinusoidal grid currents and the desired power. Negative consequences of high-frequency switching include increased switching loss and the generation of large voltage harmonics that require filtering. This dissertation proposes an alternative two-stage inverter topology aimed at reducing converter size and weight. This is achieved by reducing the number of high-frequency switching stages and associated filter requirements. The grid-interfacing stage is operated at the line frequency, while only the battery-interfacing stage operates at high frequency to shape the line currents and control power flow. The line-frequency operation generates negligible switching loss and minimal current harmonics in the grid-interfacing stage. As a result, the required filter is reduced in size. Hardware designs are performed and compared between the conventional and proposed converters to quantify expected size reduction. Control methods are developed and verified in simulation and experiment to obtain high-quality line currents at all power factors
    • …
    corecore