1,069 research outputs found

    A Sensor Network Data Compression Algorithm Based on Suboptimal Clustering and Virtual Landmark Routing Within Clusters

    Get PDF
    A kind of data compression algorithm for sensor networks based on suboptimal clustering and virtual landmark routing within clusters is proposed in this paper. Firstly, temporal redundancy existing in data obtained by the same node in sequential instants can be eliminated. Then sensor networks nodes will be clustered. Virtual node landmarks in clusters can be established based on cluster heads. Routing in clusters can be realized by combining a greedy algorithm and a flooding algorithm. Thirdly, a global structure tree based on cluster heads will be established. During the course of data transmissions from nodes to cluster heads and from cluster heads to sink, the spatial redundancy existing in the data will be eliminated. Only part of the raw data needs to be transmitted from nodes to sink, and all raw data can be recovered in the sink based on a compression code and part of the raw data. Consequently, node energy can be saved, largely because transmission of redundant data can be avoided. As a result the overall performance of the sensor network can obviously be improved

    Towards Spatial Queries over Phenomena in Sensor Networks

    Get PDF
    Today, technology developments enable inexpensive production and deployment of tiny sensing and computing nodes. Networked through wireless radio, such senor nodes form a new platform, wireless sensor networks, which provide novel ability to monitor spatiotemporally continuous phenomena. By treating a wireless sensor network as a database system, users can pose SQL-based queries over phenomena without needing to program detailed sensor node operations. DBMS-internally, intelligent and energyefficient data collection and processing algorithms have to be implemented to support spatial query processing over sensor networks. This dissertation proposes spatial query support for two views of continuous phenomena: field-based and object-based. A field-based view of continuous phenomena depicts them as a value distribution over a geographical area. However, due to the discrete and comparatively sparse distribution of sensor nodes, estimation methods are necessary to generate a field-based query result, and it has to be computed collaboratively ‘in-the-network’ due to energy constraints. This dissertation proposes SWOP, an in-network algorithm using Gaussian Kernel estimation. The key contribution is the use of a small number of Hermite coefficients to approximate the Gaussian Kernel function for sub-clustered sensor nodes, and processes the estimation result efficiently. An object-based view of continuous phenomena is interested in aspects such as the boundary of an ‘interesting region’ (e.g. toxic plume). This dissertation presents NED, which provides object boundary detection in sensor networks. NED encodes partial event estimation results based on confidence levels into optimized, variable length messages exchanged locally among neighboring sensor nodes to save communication cost. Therefore, sensor nodes detect objects and boundaries based on moving averages to eliminate noise effects and enhance detection quality. Furthermore, the dissertation proposes the SNAKE-based approach, which uses deformable curves to track the spatiotemporal changes of such objects incrementally in sensor networks. In the proposed algorithm, only neighboring nodes exchange messages to maintain the curve structures. Based on in-network tracking of deformable curves, other types of spatial and spatiotemporal properties of objects, such as area, can be provided by the sensor network. The experimental results proved that our approaches are resource friendly within the constrained sensor networks, while providing high quality query results

    Monitoring system for long-distance pipelines subject to destructive attack

    Get PDF
    In an era of terrorism, it is important to protect critical pipeline infrastructure, especially in countries where life is strongly dependent on water and the economy on oil and gas. Structural health monitoring (SHM) using acoustic waves is one of the common solutions. However, considerable prior work has shown that pipes are cylindrical acoustic waveguides that support many dispersive, lossy modes; only the torsional T(0, 1) mode has zero dispersion. Although suitable transducers have been developed, these typically excite several modes, and even if they do not, bends and supports induce mode conversion. Moreover, the high-power transducers that could in principle be used to overcome noise and attenuation in long distance pipes present an obvious safety hazard with volatile products, making it difficult to distinguish signals and extract pipeline status information. The problem worsens as the pipe diameter increases or as the frequency rises (due to the increasing number of modes), if the pipe is buried (due to rising attenuation), or if the pipe carries a flowing product (because of additional acoustic noise). Any system is therefore likely to be short-range. This research proposes the use of distributed active sensor network to monitor long-range pipelines, by verifying continuity and sensing small disturbances. A 4-element cuboid Electromagnetic Acoustic Transducer (EMAT) is used to excite the longitudinal L(0,1) mode. Although the EMAT also excites other slower modes, long distance propagation allows their effects to be separated. Correlation detection is exploited to enhance signal-to-noise ratio (SNR), and code division multiplexing access (CDMA) is used to distinguish between nodes in a multi-node system. An extensive numerical search for multiphase quasi-orthogonal codes for different user numbers is conducted. The results suggest that side lobes degrade performance even with the highest possible discrimination factor. Golay complementary pairs (which can eliminate the side lobes completely, albeit at the price of a considerable reduction in speed) are therefore investigated as an alternative. Pipeline systems are first reviewed. Acoustic wave propagation is described using standard theory and a freeware modeling package. EMAT modeling is carried out by numerical calculation of electromagnetic fields. Signal propagation is investigated theoretically using a full system simulator that allows frequency-domain description of transducers, dispersion, multi-mode propagation, mode conversion and multiple reflections. Known codes for multiplexing are constructed using standard algorithms, and novel codes are discovered by an efficient directed search. Propagation of these codes in a dispersive system is simulated. Experiments are carried out using small, unburied air-filled copper pipes in a frequency range where the number of modes is small, and the attenuation and noise are low. Excellent agreement is obtained between theory and experiment. The propagation of pulses and multiplexed codes over distances up to 200 m are successfully demonstrated, and status changes introduced by removable reflectors are detected.Open Acces

    Time domain analysis of switching transient fields in high voltage substations

    Get PDF
    Switching operations of circuit breakers and disconnect switches generate transient currents propagating along the substation busbars. At the moment of switching, the busbars temporarily acts as antennae radiating transient electromagnetic fields within the substations. The radiated fields may interfere and disrupt normal operations of electronic equipment used within the substation for measurement, control and communication purposes. Hence there is the need to fully characterise the substation electromagnetic environment as early as the design stage of substation planning and operation to ensure safe operations of the electronic equipment. This paper deals with the computation of transient electromagnetic fields due to switching within a high voltage air-insulated substation (AIS) using the finite difference time domain (FDTD) metho

    A Fault-Tolerant Mobile Computing Model Based On Scalable Replica

    Get PDF
    The most frequent challenge faced by mobile user is stay connected with online data, while disconnected or poorly connected store the replica of critical data. Nomadic users require replication to store copies of critical data on their mobile machines. Existing replication services do not provide all classes of mobile users with the capabilities they require, which include: the ability for direct synchronization between any two replicas, support for large numbers of replicas, and detailed control over what files reside on their local (mobile) replica. Existing peer-to-peer solutions would enable direct communication, but suffers from dramatic scaling problems in the number of replicas, limiting the number of overall users and impacting performance. Roam is a replication system designed to satisfy the requirements of the mobile user. Roam is based on the Ward Model, replication architecture for mobile environments. Using the Ward Model and new distributed algorithms, Roam provides a scalable replication solution for the mobile user. We describe the motivation, design, and implementation of Roam and report its performance. Replication is extremely important in mobile environments because nomadic users require local copies of important data

    Telecommunication Systems

    Get PDF
    This book is based on both industrial and academic research efforts in which a number of recent advancements and rare insights into telecommunication systems are well presented. The volume is organized into four parts: "Telecommunication Protocol, Optimization, and Security Frameworks", "Next-Generation Optical Access Technologies", "Convergence of Wireless-Optical Networks" and "Advanced Relay and Antenna Systems for Smart Networks." Chapters within these parts are self-contained and cross-referenced to facilitate further study

    Otimização de soluções de fotónica integrada para sistemas óticos de nova geração

    Get PDF
    Next generation optical systems can highly benefit from optimized photonic integrated solutions. Photonic integrated circuits (PIC) appear as a promising technology under the current demand for flexibility/reconfigurability in optical systems and telecommunications networks. PIC-based optical systems offer an efficient and cost-effective solution to data transmission increasing claims. In order to contribute to the development of integrated photonic technology, optimized PIC solutions addressing different steps of the PIC development chain, mainly design, testing, and packaging processes, are investigated. Optical signal data compression techniques are progressing to sustain the fast processing/storing of large amounts of bandwidth demanding data, with the advantage of resorting to photonic integrated solutions for the implementation of optical transforms, e.g., Haar transform (HT). This demand motivated the research of an optimized PIC design solution in silicon nitride (Si3N4) based platform comprising a two-level HT network for compression, and a switching network as a framework that supplies all logical inputs of the HT network for testing/characterization purposes. Optimized design models for the multimode interference key building block structure of the PIC design solution, are proposed. Additionally, a first test and characterization of PIC solutions implementing the HT for compression applications in indium phosphide (InP) based platform and in a new organic-inorganic hybrid material were realized. Taking advantage of a tunable lattice filter dispersion compensator in Si3N4-based integrated platform, it was demonstrated a real-time extended reach PAM-4 transmission over 40 km enabled by the photonic integrated dispersion compensator, with application in data center interconnects. Under photonic integrated high-Q resonators need for accurate performance measurement, a technique based on RF calibrated Mach-Zehnder interferometer, and Brillouin gain measurements through Lorentzian fitting analysis were successfully attained. Finally, as technical and functional requirements of PIC demand a thorough characterization/testing to provide an accurate prediction of its performance, and current testing platforms can be expensive and have low flexibility, a proof of concept of a new soft-packaging flexible platform for photonic integrated processors and spatial division multiplexing systems, based in spatial light modulation operation principle is proposed.Os sistemas óticos de nova geração beneficiam com a otimização de fotónica integrada. Com os circuitos de fotónica integrada (PIC) avançados a surgir como uma tecnologia promissora, dentro da crescente procura por flexibilidade/ reconfigurabilidade dos sistemas óticos e redes de telecomunicações. Os sistemas óticos baseados em PIC oferecem soluções eficientes e rentáveis em resposta às necessidades crescentes de transmissão de dados. De modo a contribuir para o desenvolvimento tecnológico associado à fotónica integrada, são investigados no âmbito desta dissertação diferentes soluções otimizadas de PIC, abordando diferentes estágios do seu desenvolvimento, nomeadamente projeto/design, teste e encapsulamento. Técnicas de compressão de sinais óticos estão a progredir no sentido de apoiar a expansão de velocidade de processamento e quantidade de armazenamento com elevada largura de banda associada. São esperadas vantagens recorrendo a PIC para a implementação de transformadas óticas, e.g., transformada de Haar (HT). Esta necessidade motivou a investigação de soluções de PIC com design otimizado, desenvolvidas em plataforma integrada de nitreto de silício (Si3N4). O PIC desenhado é constituído por uma rede 2D a executar a HT para fins de compressão e uma rede de comutação para produzir todas as entradas lógicas esperadas para teste e caracterização. São propostos modelos de design otimizados para a estrutura elementar que compõe o PIC, i.e., componente de interferência multimodal. Adicionalmente, foi realizado o primeiro teste e caracterização experimental de um PIC implementando a HT para fins de compressão, numa plataforma integrada de fosfato de índio (InP) e num material orgânico-inorgânico híbrido. Tirando partido de um filtro sintonizável para compensação de dispersão, desenvolvido em plataforma integrada de Si3N4, foi demostrado um link de transmissão alargada (40 km) em modulação PAM-4, com possível aplicação em centros de processamento de dados de interconexão. A necessidade de medições precisas de desempenho para a caracterização efetiva de soluções integradas de ressoadores de elevado fator de qualidade, motivou a implementação de uma técnica de medição eficaz. Esta é baseada num interferómetro de Mach-Zehnder calibrado em rádio frequência e na realização de mediações de ganho de Brillouin por análise Lorentziana de ajuste de curva. Por fim, tendo em conta os rigorosos requisitos técnicos e funcionais associados ao teste/caracterização precisa de PIC e o facto de as atuais soluções serem dispendiosas e pouco flexíveis. Uma prova de conceito de uma nova plataforma flexível de encapsulamento por software é proposta com aplicação em processadores PIC e sistemas com multiplexagem por divisão espacial.Programa Doutoral em Telecomunicaçõe

    Exploration of a Condition Monitoring System for Rolling Bearing Based on a Wireless Sensor Network

    Get PDF
    In recent years, wireless sensor networks (WSN) have attracted attention in machine condition monitoring (CM) fields for a more efficient system based on the inherent advantages of WSN, including ease of installation and relocation, lower maintenance cost and the ability to be installed in places not easily accessible. As critical components of rotating machines, bearings account for more than 40% of the various types of failures, causing considerable unpredicted breakdowns of a plant. Thus, this thesis intends to develop a cost-effective and reliable wireless measurement system for rolling bearing condition monitoring. Based on the investigation of various wireless protocols, Zigbee has been taken as a the most promising candidate for establishing the wireless condition monitoring system as it can have an acceptable bandwidth at low power consumption. However, a comparison made between wired and wireless measurement system has found that the Zigbee based wireless measurement system is deficient in streaming long continuous data of raw vibration signals from typical application environment with inevitable ambient interference. As a result, data loss can happen from time to time. To solve this issue, an on-board processing scheme is proposed by implementing advanced signal processing algorithms on the sensor side and only transmitting the processed results with a much smaller data size via the wireless sensor network. On this basis, a wireless sensor node prototype based on the state-of-the-art Cortex-M4F is designed to embed customizable signal processing algorithms. As an extensively employed algorithm for bearing fault diagnosis, envelope analysis is chosen as the on-board signal processing algorithm. Therefore, the procedure of envelope analysis and considerations for implementing it on a memory limited embedded processor are discussed in detail. With the optimization, an automatic data acquisition mechanism is achieved, which combines Timer, ADC and DMA to reduce the interference of CPU and thus to improve the efficiency for intensive computation. A 2048-point envelope analysis in single floating point format is realized on the processor with only 32kB memory. Experimental evaluation results show that the embedded envelope analysis algorithm can successfully diagnose the simulated bearing faults and the data transmission throughput can be reduced by at least 95% per frame compared with that of the raw data; this allows a large number of sensor nodes to be deployed in the network for real time monitoring. Furthermore, a computation efficient amplitude based optimal band selection algorithm is proposed for choosing an optimal band-pass filter for envelope analysis. Requiring only a small number of arithmetical operations, it can be embedded on the wireless sensor node to yield the desired performance of bearing fault detection and diagnosis
    corecore