1,017 research outputs found

    Confronting Grand Challenges in Environmental Fluid Dynamics

    Get PDF
    Environmental fluid dynamics underlies a wealth of natural, industrial and, by extension, societal challenges. In the coming decades, as we strive towards a more sustainable planet, there are a wide range of grand challenge problems that need to be tackled, ranging from fundamental advances in understanding and modeling of stratified turbulence and consequent mixing, to applied studies of pollution transport in the ocean, atmosphere and urban environments. A workshop was organized in the Les Houches School of Physics in France in January 2019 with the objective of gathering leading figures in the field to produce a road map for the scientific community. Five subject areas were addressed: multiphase flow, stratified flow, ocean transport, atmospheric and urban transport, and weather and climate prediction. This article summarizes the discussions and outcomes of the meeting, with the intent of providing a resource for the community going forward

    Confronting the Challenge of Modeling Cloud and Precipitation Microphysics

    Get PDF
    In the atmosphere, microphysics refers to the microscale processes that affect cloud and precipitation particles and is a key linkage among the various components of Earth\u27s atmospheric water and energy cycles. The representation of microphysical processes in models continues to pose a major challenge leading to uncertainty in numerical weather forecasts and climate simulations. In this paper, the problem of treating microphysics in models is divided into two parts: (i) how to represent the population of cloud and precipitation particles, given the impossibility of simulating all particles individually within a cloud, and (ii) uncertainties in the microphysical process rates owing to fundamental gaps in knowledge of cloud physics. The recently developed Lagrangian particle‐based method is advocated as a way to address several conceptual and practical challenges of representing particle populations using traditional bulk and bin microphysics parameterization schemes. For addressing critical gaps in cloud physics knowledge, sustained investment for observational advances from laboratory experiments, new probe development, and next‐generation instruments in space is needed. Greater emphasis on laboratory work, which has apparently declined over the past several decades relative to other areas of cloud physics research, is argued to be an essential ingredient for improving process‐level understanding. More systematic use of natural cloud and precipitation observations to constrain microphysics schemes is also advocated. Because it is generally difficult to quantify individual microphysical process rates from these observations directly, this presents an inverse problem that can be viewed from the standpoint of Bayesian statistics. Following this idea, a probabilistic framework is proposed that combines elements from statistical and physical modeling. Besides providing rigorous constraint of schemes, there is an added benefit of quantifying uncertainty systematically. Finally, a broader hierarchical approach is proposed to accelerate improvements in microphysics schemes, leveraging the advances described in this paper related to process modeling (using Lagrangian particle‐based schemes), laboratory experimentation, cloud and precipitation observations, and statistical methods

    Surrogate Modeling of Aerodynamic Simulations for Multiple Operating Conditions Using Machine Learning

    Get PDF
    International audienceThis paper describes a methodology, called local decomposition method, which aims at building a surrogate model based on steady turbulent aerodynamic fields at multiple operating conditions. The various shapes taken by the aerodynamic fields due to the multiple operation conditions pose real challenges as well as the computational cost of the high-fidelity simulations. The developed strategy mitigates these issues by combining traditional surrogate models and machine learning. The central idea is to separate the solutions with a subsonic behavior from the transonic and high-gradient solutions. First, a shock sensor extracts a feature corresponding to the presence of discontinuities, easing the clustering of the simulations by an unsupervised learning algorithm. Second, a supervised learning algorithm divides the parameter space into subdomains, associated to different flow regimes. Local reduced-order models are built on each subdomain using proper orthogonal decomposition coupled with a multivariate interpolation tool. Finally, an improved resampling technique taking advantage of the subdomain decomposition minimizes the redundancy of sampling. The methodology is assessed on the turbulent two-dimensional flow around the RAE2822 transonic airfoil. It exhibits a significant improvement in terms of prediction accuracy for the developed strategy compared with the classical method of surrogate modeling

    Confronting Grand Challenges in environmental fluid mechanics

    Get PDF
    Environmental fluid mechanics underlies a wealth of natural, industrial and, by extension, societal challenges. In the coming decades, as we strive towards a more sustainable planet, there are a wide range of grand challenge problems that need to be tackled, ranging from fundamental advances in understanding and modeling of stratified turbulence and consequent mixing, to applied studies of pollution transport in the ocean, atmosphere and urban environments. A workshop was organized in the Les Houches School of Physics in France in January 2019 with the objective of gathering leading figures in the field to produce a road map for the scientific community. Five subject areas were addressed: multiphase flow, stratified flow, ocean transport, atmospheric and urban transport, and weather and climate prediction. This article summarizes the discussions and outcomes of the meeting, with the intent of providing a resource for the community going forward
    • 

    corecore