19,286 research outputs found

    Message passing for the coloring problem: Gallager meets Alon and Kahale

    Full text link
    Message passing algorithms are popular in many combinatorial optimization problems. For example, experimental results show that {\em survey propagation} (a certain message passing algorithm) is effective in finding proper kk-colorings of random graphs in the near-threshold regime. In 1962 Gallager introduced the concept of Low Density Parity Check (LDPC) codes, and suggested a simple decoding algorithm based on message passing. In 1994 Alon and Kahale exhibited a coloring algorithm and proved its usefulness for finding a kk-coloring of graphs drawn from a certain planted-solution distribution over kk-colorable graphs. In this work we show an interpretation of Alon and Kahale's coloring algorithm in light of Gallager's decoding algorithm, thus showing a connection between the two problems - coloring and decoding. This also provides a rigorous evidence for the usefulness of the message passing paradigm for the graph coloring problem. Our techniques can be applied to several other combinatorial optimization problems and networking-related issues.Comment: 11 page

    Phase Transitions in Semidefinite Relaxations

    Full text link
    Statistical inference problems arising within signal processing, data mining, and machine learning naturally give rise to hard combinatorial optimization problems. These problems become intractable when the dimensionality of the data is large, as is often the case for modern datasets. A popular idea is to construct convex relaxations of these combinatorial problems, which can be solved efficiently for large scale datasets. Semidefinite programming (SDP) relaxations are among the most powerful methods in this family, and are surprisingly well-suited for a broad range of problems where data take the form of matrices or graphs. It has been observed several times that, when the `statistical noise' is small enough, SDP relaxations correctly detect the underlying combinatorial structures. In this paper we develop asymptotic predictions for several `detection thresholds,' as well as for the estimation error above these thresholds. We study some classical SDP relaxations for statistical problems motivated by graph synchronization and community detection in networks. We map these optimization problems to statistical mechanics models with vector spins, and use non-rigorous techniques from statistical mechanics to characterize the corresponding phase transitions. Our results clarify the effectiveness of SDP relaxations in solving high-dimensional statistical problems.Comment: 71 pages, 24 pdf figure

    Scaling and Universality in Continuous Length Combinatorial Optimization

    Full text link
    We consider combinatorial optimization problems defined over random ensembles, and study how solution cost increases when the optimal solution undergoes a small perturbation delta. For the minimum spanning tree, the increase in cost scales as delta^2; for the mean-field and Euclidean minimum matching and traveling salesman problems in dimension d>=2, the increase scales as delta^3; this is observed in Monte Carlo simulations in d=2,3,4 and in theoretical analysis of a mean-field model. We speculate that the scaling exponent could serve to classify combinatorial optimization problems into a small number of distinct categories, similar to universality classes in statistical physics.Comment: 5 pages; 3 figure

    Systems approaches and algorithms for discovery of combinatorial therapies

    Full text link
    Effective therapy of complex diseases requires control of highly non-linear complex networks that remain incompletely characterized. In particular, drug intervention can be seen as control of signaling in cellular networks. Identification of control parameters presents an extreme challenge due to the combinatorial explosion of control possibilities in combination therapy and to the incomplete knowledge of the systems biology of cells. In this review paper we describe the main current and proposed approaches to the design of combinatorial therapies, including the empirical methods used now by clinicians and alternative approaches suggested recently by several authors. New approaches for designing combinations arising from systems biology are described. We discuss in special detail the design of algorithms that identify optimal control parameters in cellular networks based on a quantitative characterization of control landscapes, maximizing utilization of incomplete knowledge of the state and structure of intracellular networks. The use of new technology for high-throughput measurements is key to these new approaches to combination therapy and essential for the characterization of control landscapes and implementation of the algorithms. Combinatorial optimization in medical therapy is also compared with the combinatorial optimization of engineering and materials science and similarities and differences are delineated.Comment: 25 page

    Provably Good Solutions to the Knapsack Problem via Neural Networks of Bounded Size

    Full text link
    The development of a satisfying and rigorous mathematical understanding of the performance of neural networks is a major challenge in artificial intelligence. Against this background, we study the expressive power of neural networks through the example of the classical NP-hard Knapsack Problem. Our main contribution is a class of recurrent neural networks (RNNs) with rectified linear units that are iteratively applied to each item of a Knapsack instance and thereby compute optimal or provably good solution values. We show that an RNN of depth four and width depending quadratically on the profit of an optimum Knapsack solution is sufficient to find optimum Knapsack solutions. We also prove the following tradeoff between the size of an RNN and the quality of the computed Knapsack solution: for Knapsack instances consisting of nn items, an RNN of depth five and width ww computes a solution of value at least 1−O(n2/w)1-\mathcal{O}(n^2/\sqrt{w}) times the optimum solution value. Our results build upon a classical dynamic programming formulation of the Knapsack Problem as well as a careful rounding of profit values that are also at the core of the well-known fully polynomial-time approximation scheme for the Knapsack Problem. A carefully conducted computational study qualitatively supports our theoretical size bounds. Finally, we point out that our results can be generalized to many other combinatorial optimization problems that admit dynamic programming solution methods, such as various Shortest Path Problems, the Longest Common Subsequence Problem, and the Traveling Salesperson Problem.Comment: A short version of this paper appears in the proceedings of AAAI 202
    • …
    corecore