3,177 research outputs found

    Mean shift object tracking with occlusion handling

    Get PDF
    An object tracking algorithm using the Mean Shift framework is presented which is largely invariant to both partial and full occlusions, complex backgrounds and change in scale. Multiple features are used to gain a descriptive representation of the target object. Image moments are used to determine the scale of the target object. A kalman filter is used to successfully track the target object through partial and full occlusions, the Bhattacharyya coefficient is used to determine the measurement noise estimation

    Multi-Kernel Object Tracking

    Get PDF
    In this paper, we present an object tracking algorithm for the low-frame-rate video in which objects have fast motion. The conventional mean-shift tracking fails in case the relocation of an object is large and its regions between the consecutive frames do not overlap. We provide a solution to this problem by using multiple kernels centered at the high motion areas. In addition, we improve the convergence properties of the mean-shift by integrating two likelihood terms, background and template similarities, in the iterative update mechanism. Our simulations prove the effectiveness of the proposed method

    Bayesian Modeling of Dynamic Scenes for Object Detection

    Get PDF
    Abstract—Accurate detection of moving objects is an important precursor to stable tracking or recognition. In this paper, we present an object detection scheme that has three innovations over existing approaches. First, the model of the intensities of image pixels as independent random variables is challenged and it is asserted that useful correlation exists in intensities of spatially proximal pixels. This correlation is exploited to sustain high levels of detection accuracy in the presence of dynamic backgrounds. By using a nonparametric density estimation method over a joint domain-range representation of image pixels, multimodal spatial uncertainties and complex dependencies between the domain (location) and range (color) are directly modeled. We propose a model of the background as a single probability density. Second, temporal persistence is proposed as a detection criterion. Unlike previous approaches to object detection which detect objects by building adaptive models of the background, the foreground is modeled to augment the detection of objects (without explicit tracking) since objects detected in the preceding frame contain substantial evidence for detection in the current frame. Finally, the background and foreground models are used competitively in a MAP-MRF decision framework, stressing spatial context as a condition of detecting interesting objects and the posterior function is maximized efficiently by finding the minimum cut of a capacitated graph. Experimental validation of the proposed method is performed and presented on a diverse set of dynamic scenes. Index Terms—Object detection, kernel density estimation, joint domain range, MAP-MRF estimation. æ

    Probabilistic three-dimensional object tracking based on adaptive depth segmentation

    Get PDF
    Object tracking is one of the fundamental topics of computer vision with diverse applications. The arising challenges in tracking, i.e., cluttered scenes, occlusion, complex motion, and illumination variations have motivated utilization of depth information from 3D sensors. However, current 3D trackers are not applicable to unconstrained environments without a priori knowledge. As an important object detection module in tracking, segmentation subdivides an image into its constituent regions. Nevertheless, the existing range segmentation methods in literature are difficult to implement in real-time due to their slow performance. In this thesis, a 3D object tracking method based on adaptive depth segmentation and particle filtering is presented. In this approach, the segmentation method as the bottom-up process is combined with the particle filter as the top-down process to achieve efficient tracking results under challenging circumstances. The experimental results demonstrate the efficiency, as well as robustness of the tracking algorithm utilizing real-world range information

    OBJECT TRACKING BY ADAPTIVE MEAN SHIFT WITH KERNEL BASED CENTROID METHOD

    Get PDF
    ABSTRACT An approach towards the object tracking, the impactful method object improve localization, is proposed. Object is firstly optimize by the adaptive mean shift, if there is high localization then current frame of video replace by the next frame and adaptive mean shift is use to maximize the Bhattacharya coefficient .If there is low localization by adaptive mean shift then histogram based target representation is regularized by an isotropic kernel and then centroid is calculated by the binary gradient matrix. This means we add some structure information in feature space. This method is successfully coped with fast moving object, camera video, target scale change and partially occlusions. The proposed method is very efficient in case of both computational and space criteria

    Object Tracking

    Get PDF
    Object tracking consists in estimation of trajectory of moving objects in the sequence of images. Automation of the computer object tracking is a difficult task. Dynamics of multiple parameters changes representing features and motion of the objects, and temporary partial or full occlusion of the tracked objects have to be considered. This monograph presents the development of object tracking algorithms, methods and systems. Both, state of the art of object tracking methods and also the new trends in research are described in this book. Fourteen chapters are split into two sections. Section 1 presents new theoretical ideas whereas Section 2 presents real-life applications. Despite the variety of topics contained in this monograph it constitutes a consisted knowledge in the field of computer object tracking. The intention of editor was to follow up the very quick progress in the developing of methods as well as extension of the application
    • …
    corecore