721 research outputs found

    Distinct phase-amplitude couplings distinguish cognitive processes in human attention

    Get PDF
    Abstract Spatial attention is the cognitive function that coordinates the selection of visual stimuli with appropriate behavioral responses. Recent studies have reported that phase-amplitude coupling (PAC) of low and high frequencies covaries with spatial attention, but differ on the direction of covariation and the frequency ranges involved. We hypothesized that distinct phase-amplitude frequency pairs have differentiable contributions during tasks that manipulate spatial attention. We investigated this hypothesis with electrocorticography (ECoG) recordings from participants who engaged in a cued spatial attention task. To understand the contribution of PAC to spatial attention we classified cortical sites by their relationship to spatial variables or behavioral performance. Local neural activity in spatial sites was sensitive to spatial variables in the task, while local neural activity in behavioral sites correlated with reaction time. We found two PAC frequency clusters that covaried with different aspects of the task. During a period of cued attention, delta-phase/high-gamma (DH) PAC was sensitive to cue direction in spatial sites. In contrast, theta-alpha-phase/beta-low-gamma-amplitude (TABL) PAC robustly correlated with future reaction times in behavioral sites. Finally, we investigated the origins of TABL PAC and found it corresponded to behaviorally relevant, sharp waveforms, which were also coupled to a low frequency rhythm. We conclude that TABL and DH PAC correspond to distinct mechanisms during spatial attention tasks and that sharp waveforms are elements of a coupled dynamical process

    Inferring human intentions from the brain data

    Get PDF

    Coupled Correlates of Attention and Consciousness

    Get PDF
    Introduction: Brain Computer Interfaces (BCIs) have been shown to restore lost motor function that occurs in stroke using electrophysiological signals. However, little evidence exists for the use of BCIs to restore non-motor stroke deficits, such as the attention deficits seen in hemineglect. Attention is a cognitive function that selects objects or ideas for further neural processing, presumably to facilitate optimal behavior. Developing BCIs for attention is different from developing motor BCIs because attention networks in the brain are more distributed and associative than motor networks. For example, hemineglect patients have reduced levels of arousal, which exacerbates their attentional deficits. More generally, attention is a state of high arousal and salient conscious experience. Current models of consciousness suggest that both slow wave sleep and Propofol-induced unconsciousness lie at one end of the consciousness spectrum, while attentive states lie at the other end. Accordingly, investigating the electrophysiology underlying attention and the extremes of consciousness will further the development of attentional BCIs. Phase amplitude coupling (PAC) of neural oscillations has been suggested as a mechanism for organizing local and global brain activity across regions. While evidence suggests that delta-high-gamma PAC, which includes very low frequencies (i.e. delta, 1-3 Hz) coupled with very high frequencies (i.e. gamma 70-150 Hz), is implicated in attention, less evidence exists for the involvement of coupled mid-range frequencies (i.e. theta, 4-7Hz, alpha: 8-15 Hz, beta: 15-30 Hz and low-gamma: 30-50 Hz, aka TABL PAC). We found that TABL PAC correlates with reaction time in an attention task. These mid-range frequencies are important because they can be used in non-invasive electroencephalography (EEG) BCI’s. Therefore, we investigated the origins of these mid-frequency interactions in both attention and consciousness. In this work, we evaluate the relationship between PAC to attention and arousal, with emphasis on developing control signals for an attentional BCI. Objective: To understand how PAC facilitates attention and arousal for building BCI’s that restore lost attentional function. More generally, our objective was to discover and understand potential control features for BCIs that enhance attention and conscious experience. Methods: We used four electrophysiological datasets in human subjects. The first dataset included six subjects with invasive ECoG recordings while subjects engaged in a Posner cued spatial attention task. The second dataset included five subjects with ECoG recordings during sleep and awake states. The third dataset included 6 subjects with invasively monitored ECoG during induction and emergence from Propofol anesthesia. We validated findings from the second dataset with an EEG dataset that included 39 subjects with EEG and sleep scoring. We developed custom, wavelet-based, signal processing algorithms designed to optimally calculate differences in mid-frequency-range (i.e. TABL) PAC and compare them to DH PAC across different attentional and conscious states. We developed non-parametric cluster-based permutation tests to infer statistical significance while minimizing the false-positive rate. In the attention experiment, we used the location of cued spatial stimuli and reaction time (RT) as markers of attention. We defined stimulus-related and behaviorally-related cortical sites and compared their relative PAC magnitudes. In the sleep dataset, we compared PAC across sleep states (e.g. Wake vs Slow Wave Sleep). In the anesthesia dataset, we compared the beginning and ending of induction and emergence (e.g. Wake vs Propofol Induced Loss of Consciousness) Results: We found different patterns of activity represented by TABL PAC and DH PAC in both attention and sleep datasets. First, during a spatial attention task TABL PAC robustly predicted whether a subject would respond quickly or slowly. TABL PAC maintained a consistent phase-preference across all cortical sites and was strongest in behaviorally-relevant cortical sites. In contrast, DH PAC represented the location of attention in spatially-relevant cortical sites. Furthermore, we discovered that sharp waves caused TABL PAC. These sharp waves appeared to be transient beta (50ms) waves that occurred at ~140 ms intervals, corresponding to a theta oscillation. In the arousal dataset DH PAC increased in both slow wave sleep (SWS) and Propofol-induced loss of consciousness (PILOC) states. However, TABL PAC increased only during PILOC and decreased during SWS, when compared to waking states. We provide evidence that TABL PAC represents “gating by inhibition” in the human brain. Conclusions: Our goal was to develop electrophysiological signals representing attention and to understand how these features explain the relationship between attention and low-arousal states. We found a novel biomarker, TABL PAC, that predicted non-spatial aspects of attention and discriminated between two states of unconsciousness. The evidence suggested that TABL PAC represents inhibitory activity that filters out irrelevant information in attention tasks. This inhibitory mechanism of was confirmed by significant increases in TABL PAC during Propofol anesthesia, when compared to SWS or waking brain activity. We conclude that TABL PAC informs the development of electrophysiological control signals for attention and the discrimination of unconscious states

    The right hippocampus leads the bilateral integration of gamma-parsed lateralized information

    Get PDF
    It is unclear whether the two hippocampal lobes convey similar or different activities and how they cooperate. Spatial discrimination of electric fields in anesthetized rats allowed us to compare the pathway-specific field potentials corresponding to the gamma-paced CA3 output (CA1 Schaffer potentials) and CA3 somatic inhibition within and between sides. Bilateral excitatory Schaffer gamma waves are generally larger and lead from the right hemisphere with only moderate covariation of amplitude, and drive CA1 pyramidal units more strongly than unilateral waves. CA3 waves lock to the ipsilateral Schaffer potentials, although bilateral coherence was weak. Notably, Schaffer activity may run laterally, as seen after the disruption of the connecting pathways. Thus, asymmetric operations promote the entrainment of CA3-autonomous gamma oscillators bilaterally, synchronizing lateralized gamma strings to converge optimally on CA1 targets. The findings support the view that interhippocampal connections integrate different aspects of information that flow through the left and right lobes

    Steady-State movement related potentials for brain–computer interfacing

    Get PDF
    An approach for brain-computer interfacing (BCI) by analysis of steady-state movement related potentials (ssMRPs) produced during rhythmic finger movements is proposed in this paper. The neurological background of ssMRPs is briefly reviewed. Averaged ssMRPs represent the development of a lateralized rhythmic potential, and the energy of the EEG signals at the finger tapping frequency can be used for single-trial ssMRP classification. The proposed ssMRP-based BCI approach is tested using the classic Fisher's linear discriminant classifier. Moreover, the influence of the current source density transform on the performance of BCI system is investigated. The averaged correct classification rates (CCRs) as well as averaged information transfer rates (ITRs) for different sliding time windows are reported. Reliable single-trial classification rates of 88%-100% accuracy are achievable at relatively high ITRs. Furthermore, we have been able to achieve CCRs of up to 93% in classification of the ssMRPs recorded during imagined rhythmic finger movements. The merit of this approach is in the application of rhythmic cues for BCI, the relatively simple recording setup, and straightforward computations that make the real-time implementations plausible

    Spatial Olfactory Memory and Spatial Olfactory Navigation, Assessed with a Variant of Corsi Test, Is Modulated by Gender and Sporty Activity

    Get PDF
    Many studies have focused on navigation, spatial skills, and the olfactory system in comparative models, including those concerning the relationship between them and physical activity. Although the results are often in contrast with each other, it is assumed that physical activity can affect cognition in different ways-both indirectly and through a certain influence on some brain structures. In contrast, there is little research that focuses on the relationship between spatial abilities and olfactory abilities in humans. This research aimed to evaluate and compare the performance in working memory tasks of athletes and non-athletes who require good visual-spatial navigation, olfactory-spatial navigation, and olfactory-semantic skills. The study involved 236 participants (83 athletes) between the ages of 18 and 40. All subjects were matched by age or sex. The standard Corsi Block Tapping Test (CBTT) was administrated to investigate the visual-spatial memory. Olfactory-spatial navigation and olfactory-semantic skills were assessed with two modified versions of CBTT: Olfactory CBTT (OCBTT) and Semantic-Olfactory CBTT (SOCBTT) respectively. The results show differences between the CORSI conditions in direction of a poor performance for athletes. A gender effect in favor of men was also found, particularly in the classic version of the CBTT. Both groups performed better in the classic version of the CBTT than OCBTT and SOCBTT. The mean of SOCBTT results is markedly lower, perhaps due to the different information processing systems needed to perform this kind of task. It is possible to explain how sports practice can affect tasks that require spatial skills and olfactory perception differently, thus supporting new hypotheses and opening new scientific horizons
    • …
    corecore