77,400 research outputs found

    Intelligent escalation and the principle of relativity

    Get PDF
    Escalation is the fact that in a game (for instance in an auction), the agents play forever. The 0,10,1-game is an extremely simple infinite game with intelligent agents in which escalation arises. It shows at the light of research on cognitive psychology the difference between intelligence (algorithmic mind) and rationality (algorithmic and reflective mind) in decision processes. It also shows that depending on the point of view (inside or outside) the rationality of the agent may change which is proposed to be called the principle of relativity.Comment: arXiv admin note: substantial text overlap with arXiv:1306.228

    Degree of Sequentiality of Weighted Automata

    Get PDF
    Weighted automata (WA) are an important formalism to describe quantitative properties. Obtaining equivalent deterministic machines is a longstanding research problem. In this paper we consider WA with a set semantics, meaning that the semantics is given by the set of weights of accepting runs. We focus on multi-sequential WA that are defined as finite unions of sequential WA. The problem we address is to minimize the size of this union. We call this minimum the degree of sequentiality of (the relation realized by) the WA. For a given positive integer k, we provide multiple characterizations of relations realized by a union of k sequential WA over an infinitary finitely generated group: a Lipschitz-like machine independent property, a pattern on the automaton (a new twinning property) and a subclass of cost register automata. When possible, we effectively translate a WA into an equivalent union of k sequential WA. We also provide a decision procedure for our twinning property for commutative computable groups thus allowing to compute the degree of sequentiality. Last, we show that these results also hold for word transducers and that the associated decision problem is PSPACE -complete

    Intensional and Extensional Semantics of Bounded and Unbounded Nondeterminism

    Get PDF
    We give extensional and intensional characterizations of nondeterministic functional programs: as structure preserving functions between biorders, and as nondeterministic sequential algorithms on ordered concrete data structures which compute them. A fundamental result establishes that the extensional and intensional representations of non-deterministic programs are equivalent, by showing how to construct a unique sequential algorithm which computes a given monotone and stable function, and describing the conditions on sequential algorithms which correspond to continuity with respect to each order. We illustrate by defining may and must-testing denotational semantics for a sequential functional language with bounded and unbounded choice operators. We prove that these are computationally adequate, despite the non-continuity of the must-testing semantics of unbounded nondeterminism. In the bounded case, we prove that our continuous models are fully abstract with respect to may and must-testing by identifying a simple universal type, which may also form the basis for models of the untyped lambda-calculus. In the unbounded case we observe that our model contains computable functions which are not denoted by terms, by identifying a further "weak continuity" property of the definable elements, and use this to establish that it is not fully abstract

    On sets of numbers rationally represented in a rational base number system

    Full text link
    In this work, it is proved that a set of numbers closed under addition and whose representations in a rational base numeration system is a rational language is not a finitely generated additive monoid. A key to the proof is the definition of a strong combinatorial property on languages : the bounded left iteration property. It is both an unnatural property in usual formal language theory (as it contradicts any kind of pumping lemma) and an ideal fit to the languages defined through rational base number systems

    Information-based complexity, feedback and dynamics in convex programming

    Get PDF
    We study the intrinsic limitations of sequential convex optimization through the lens of feedback information theory. In the oracle model of optimization, an algorithm queries an {\em oracle} for noisy information about the unknown objective function, and the goal is to (approximately) minimize every function in a given class using as few queries as possible. We show that, in order for a function to be optimized, the algorithm must be able to accumulate enough information about the objective. This, in turn, puts limits on the speed of optimization under specific assumptions on the oracle and the type of feedback. Our techniques are akin to the ones used in statistical literature to obtain minimax lower bounds on the risks of estimation procedures; the notable difference is that, unlike in the case of i.i.d. data, a sequential optimization algorithm can gather observations in a {\em controlled} manner, so that the amount of information at each step is allowed to change in time. In particular, we show that optimization algorithms often obey the law of diminishing returns: the signal-to-noise ratio drops as the optimization algorithm approaches the optimum. To underscore the generality of the tools, we use our approach to derive fundamental lower bounds for a certain active learning problem. Overall, the present work connects the intuitive notions of information in optimization, experimental design, estimation, and active learning to the quantitative notion of Shannon information.Comment: final version; to appear in IEEE Transactions on Information Theor

    Evolving MultiAlgebras unify all usual sequential computation models

    Get PDF
    It is well-known that Abstract State Machines (ASMs) can simulate "step-by-step" any type of machines (Turing machines, RAMs, etc.). We aim to overcome two facts: 1) simulation is not identification, 2) the ASMs simulating machines of some type do not constitute a natural class among all ASMs. We modify Gurevich's notion of ASM to that of EMA ("Evolving MultiAlgebra") by replacing the program (which is a syntactic object) by a semantic object: a functional which has to be very simply definable over the static part of the ASM. We prove that very natural classes of EMAs correspond via "literal identifications" to slight extensions of the usual machine models and also to grammar models. Though we modify these models, we keep their computation approach: only some contingencies are modified. Thus, EMAs appear as the mathematical model unifying all kinds of sequential computation paradigms.Comment: 12 pages, Symposium on Theoretical Aspects of Computer Scienc

    Aperiodic String Transducers

    Full text link
    Regular string-to-string functions enjoy a nice triple characterization through deterministic two-way transducers (2DFT), streaming string transducers (SST) and MSO definable functions. This result has recently been lifted to FO definable functions, with equivalent representations by means of aperiodic 2DFT and aperiodic 1-bounded SST, extending a well-known result on regular languages. In this paper, we give three direct transformations: i) from 1-bounded SST to 2DFT, ii) from 2DFT to copyless SST, and iii) from k-bounded to 1-bounded SST. We give the complexity of each construction and also prove that they preserve the aperiodicity of transducers. As corollaries, we obtain that FO definable string-to-string functions are equivalent to SST whose transition monoid is finite and aperiodic, and to aperiodic copyless SST
    • …
    corecore