3,505 research outputs found

    Invisible control of self-organizing agents leaving unknown environments

    Get PDF
    In this paper we are concerned with multiscale modeling, control, and simulation of self-organizing agents leaving an unknown area under limited visibility, with special emphasis on crowds. We first introduce a new microscopic model characterized by an exploration phase and an evacuation phase. The main ingredients of the model are an alignment term, accounting for the herding effect typical of uncertain behavior, and a random walk, accounting for the need to explore the environment under limited visibility. We consider both metrical and topological interactions. Moreover, a few special agents, the leaders, not recognized as such by the crowd, are "hidden" in the crowd with a special controlled dynamics. Next, relying on a Boltzmann approach, we derive a mesoscopic model for a continuum density of followers, coupled with a microscopic description for the leaders' dynamics. Finally, optimal control of the crowd is studied. It is assumed that leaders exploit the herding effect in order to steer the crowd towards the exits and reduce clogging. Locally-optimal behavior of leaders is computed. Numerical simulations show the efficiency of the optimization methods in both microscopic and mesoscopic settings. We also perform a real experiment with people to study the feasibility of the proposed bottom-up crowd control technique.Comment: in SIAM J. Appl. Math, 201

    Rationality: a social-epistemology perspective

    Get PDF
    Both in philosophy and in psychology, human rationality has traditionally been studied from an "individualistic" perspective. Recently, social epistemologists have drawn attention to the fact that epistemic interactions among agents also give rise to important questions concerning rationality. In previous work, we have used a formal model to assess the risk that a particular type of social-epistemic interactions lead agents with initially consistent belief states into inconsistent belief states. Here, we continue this work by investigating the dynamics to which these interactions may give rise in the population as a whole

    Ped-Air: A Simulator for Loading, Unloading, and Evacuating Aircraft

    Get PDF
    AbstractWe present Ped-Air, a pedestrian simulation system to model the loading, unloading, and evacuation of commercial aircraft. We address the challenge of simulating passenger movement in constrained spaces (e.g., aisles and rows), along with complex, coordinating behaviors between the passengers. Ped-Air models different categories of passengers and flight crew, capturing their unique behaviors and complex interactions. We exhibit Ped-Airs capabilities by simulating passenger movements on two representative aircraft: a single-aisle Boeing 737, and a double-aisle Boeing 777. We are able to simulate the following behaviors: stress, luggage placement, flight staff assisting passengers, obstructed exits for evacuation

    Disentangling intrinsic motion from neighbourhood effects in heterogeneous collective motion

    Full text link
    Most real world collectives, including active particles, living cells, and grains, are heterogeneous, where individuals with differing properties interact. The differences among individuals in their intrinsic properties have emergent effects at the group level. It is often of interest to infer how the intrinsic properties differ among the individuals, based on their observed movement patterns. However, the true individual properties may be masked by emergent effects in the collective. We investigate the inference problem in the context of a bidisperse collective with two types of agents, where the goal is to observe the motion of the collective and classify the agents according to their types. Since collective effects such as jamming and clustering affect individual motion, an agent's own movement does not have sufficient information to perform the classification well: a simple observer algorithm, based only on individual velocities cannot accurately estimate the level of heterogeneity of the system, and often misclassifies agents. We propose a novel approach to the classification problem, where collective effects on an agent's motion is explicitly accounted for. We use insights about the physics of collective motion to quantify the effect of the neighbourhood on an agent using a neighbourhood parameter. Such an approach can distinguish between agents of two types, even when their observed motion is identical. This approach estimates the level of heterogeneity much more accurately, and achieves significant improvements in classification. Our results demonstrate that explicitly accounting for neighbourhood effects is often necessary to correctly infer intrinsic properties of individuals.Comment: Supplementary movies can be found in: https://www.dannyraj.com/obsinf-supp-inf

    Adaptive network models of collective decision making in swarming systems

    Get PDF
    We consider a class of adaptive network models where links can only be created or deleted between nodes in different states. These models provide an approximate description of a set of systems where nodes represent agents moving in physical or abstract space, the state of each node represents the agent's heading direction, and links indicate mutual awareness. We show analytically that the adaptive network description captures the phase transition to collective motion in swarming systems and that the properties of this transition are determined by the number of states (discrete heading directions) that can be accessed by each agent.Comment: 8 pages, 5 figure

    Optimal Self-Organization

    Full text link
    We present computational and analytical results indicating that systems of driven entities with repulsive interactions tend to reach an optimal state associated with minimal interaction and minimal dissipation. Using concepts from non-equilibrium thermodynamics and game theoretical ideas, we generalize this finding to an even wider class of self-organizing systems which have the ability to reach a state of maximal overall ``success''. This principle is expected to be relevant for driven systems in physics like sheared granular media, but it is also applicable to biological, social, and economic systems, for which only a limited number of quantitative principles are available yet.Comment: This is the detailled revised version of a preprint on ``Self-Organised Optimality'' (cond-mat/9903319). For related work see http://www.theo2.physik.uni-stuttgart.de/helbing.html and http://angel.elte.hu/~vicsek

    Two dimensional outflows for cellular automata with shuffle updates

    Full text link
    In this paper, we explore the two-dimensional behavior of cellular automata with shuffle updates. As a test case, we consider the evacuation of a square room by pedestrians modeled by a cellular automaton model with a static floor field. Shuffle updates are characterized by a variable associated to each particle and called phase, that can be interpreted as the phase in the step cycle in the frame of pedestrian flows. Here we also introduce a dynamics for these phases, in order to modify the properties of the model. We investigate in particular the crossover between low- and high-density regimes that occurs when the density of pedestrians increases, the dependency of the outflow in the strength of the floor field, and the shape of the queue in front of the exit. Eventually we discuss the relevance of these results for pedestrians.Comment: 20 pages, 5 figures. v2: 16 pages, 5 figures; changed the title, abstract and structure of the paper. v3: minor change

    Influence of the number of predecessors in interaction within acceleration-based flow models

    Full text link
    In this paper, the stability of the uniform solutions is analysed for microscopic flow models in interaction with K1K\ge1 predecessors. We calculate general conditions for the linear stability on the ring geometry and explore the results with particular pedestrian and car-following models based on relaxation processes. The uniform solutions are stable if the relaxation times are sufficiently small. The analysis is focused on the relevance of the number of predecessors in the dynamics. Unexpected non-monotonic relations between KK and the stability are presented.Comment: 18 pages, 14 figure
    corecore