25,789 research outputs found

    Liquid droplet radiator program at the NASA Lewis Research Center

    Get PDF
    The NASA Lewis Research Center and the Air Force Rocket Propulsion Laboratory (AFRPL) are jointly engaged in a program for technical assessment of the Liquid Droplet Radiator (LDR) concept as an advanced high performance heat ejection component for future space missions. NASA Lewis has responsibility for the technology needed for the droplet generator, for working fluid qualification, and for investigating the physics of droplets in space; NASA Lewis is also conducting systems/mission analyses for potential LDR applications with candidate space power systems. For the droplet generator technology task, both micro-orifice fabrication techniques and droplet stream formation processes have been experimentally investigated. High quality micro-orifices (to 50 micron diameter) are routinely fabricated with automated equipment. Droplet formation studies have established operating boundaries for the generation of controlled and uniform droplet streams. A test rig is currently being installed for the experimental verification, under simulated space conditions, of droplet radiation heat transfer performance analyses and the determination of the effect radiative emissivity of multiple droplet streams. Initial testing has begun in the NASA Lewis Zero-Gravity Facility for investigating droplet stream behavior in microgravity conditions. This includes the effect of orifice wetting on jet dynamics and droplet formation. Results for both Brayton and Stirling power cycles have identified favorable mass and size comparisons of the LDR with conventional radiator concepts

    Energy chirp measurements by means of an RF deflector: a case study the gamma beam source LINAC at ELI-NP

    Get PDF
    RF Deflector (RFD) based measurements are widely used in high–brightness electron LINAC around the world in order to measure the ultra–short electron bunch length. The RFD provides a vertical kick to the particles of the electron bunch according to their longitudinal positions. In this paper, a measurement technique for the bunch length and other bunch proprieties, based on the usage of an RFD, is proposed. The basic idea is to obtain information about the bunch length, energy chirp, and energy spread from vertical spot size measurements varying the RFD phase, because they add contributions on this quantity. The case study is the Gamma Beam System (GBS), the Compton Source being built in the Extreme Light Infrastructure–Nuclear Physics (ELI–NP) facility. The ELEctron Generation ANd Tracking (ELEGANT) code is used for tracking the particles from RFD to the measurement screen

    Construction of a Cantilever-Andreev-Tunneling rig and its applications to superconductors

    Full text link
    A technique for point-contact spectroscopy, based on an electro-mechanical mechanism for the contact formation, has been developed. It is designed to be used in both 4^4He and 3^3He cryostats. The performance has been demonstrated by conductance measurements on various kinds of superconductors, including the conventional superconductor Nb, the two-band superconductor MgB2_2, and the heavy-fermion superconductor CeCoIn5_5. Characteristic conductance spectra obtained prove this technique is useful for the investigation of the superconducting order parameter. Advantages of this technique such as its simplicity and versatility are described.Comment: 7 Pages, 7 figures, typeset in LaTeX, submitted to Rev. Sci. Instru
    • …
    corecore