53 research outputs found

    Affine shuffles, shuffles with cuts, the Whitehouse module, and patience sorting

    Get PDF
    Type A affine shuffles are compared with riffle shuffles followed by a cut. Although these probability measures on the symmetric group S_n are different, they both satisfy a convolution property. Strong evidence is given that when the underlying parameter qq satisfies gcd(n,qβˆ’1)=1gcd(n,q-1)=1, the induced measures on conjugacy classes of the symmetric group coincide. This gives rise to interesting combinatorics concerning the modular equidistribution by major index of permutations in a given conjugacy class and with a given number of cyclic descents. It is proved that the use of cuts does not speed up the convergence rate of riffle shuffles to randomness. Generating functions for the first pile size in patience sorting from decks with repeated values are derived. This relates to random matrices.Comment: Galley version for J. Alg.; minor revisions in Sec.

    The combinatorics of biased riffle shuffles

    Full text link
    This paper studies biased riffle shuffles, first defined by Diaconis, Fill, and Pitman. These shuffles generalize the well-studied Gilbert-Shannon-Reeds shuffle and convolve nicely. An upper bound is given for the time for these shuffles to converge to the uniform distribution; this matches lower bounds of Lalley. A careful version of a bijection of Gessel leads to a generating function for cycle structure after one of these shuffles and gives new results about descents in random permutations. Results are also obtained about the inversion and descent structure of a permutation after one of these shuffles.Comment: 11 page

    Applications of the Brauer complex: card shuffling, permutation statistics, and dynamical systems

    Get PDF
    By algebraic group theory, there is a map from the semisimple conjugacy classes of a finite group of Lie type to the conjugacy classes of the Weyl group. Picking a semisimple class uniformly at random yields a probability measure on conjugacy classes of the Weyl group. Using the Brauer complex, it is proved that this measure agrees with a second measure on conjugacy classes of the Weyl group induced by a construction of Cellini using the affine Weyl group. Formulas for Cellini's measure in type AA are found. This leads to new models of card shuffling and has interesting combinatorial and number theoretic consequences. An analysis of type C gives another solution to a problem of Rogers in dynamical systems: the enumeration of unimodal permutations by cycle structure. The proof uses the factorization theory of palindromic polynomials over finite fields. Contact is made with symmetric function theory.Comment: One change: we fix a typo in definition of f(m,k,i,d) on page 1

    Carries, shuffling, and symmetric functions

    Get PDF
    The "carries" when n random numbers are added base b form a Markov chain with an "amazing" transition matrix determined by Holte. This same Markov chain occurs in following the number of descents or rising sequences when n cards are repeatedly riffle shuffled. We give generating and symmetric function proofs and determine the rate of convergence of this Markov chain to stationarity. Similar results are given for type B shuffles. We also develop connections with Gaussian autoregressive processes and the Veronese mapping of commutative algebra.Comment: 23 page
    • …
    corecore