3,443 research outputs found

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Robot skill learning system of multi-space fusion based on dynamic movement primitives and adaptive neural network control

    Get PDF
    This article develops a robot skill learning system with multi-space fusion, simultaneously considering motion/stiffness generation and trajectory tracking. To begin with, surface electromyography (sEMG) signals from the human arm is captured based on the MYO armband to estimate endpoint stiffness. Gaussian Process Regression (GPR) is combined with dynamic movement primitive (DMP) to extract more skills features from multi-demonstrations. Then, the traditional DMP formulation is improved based on the Riemannian metric to encode the robot's quaternions with non-Euclidean properties. Furthermore, an adaptive neural network (NN)-based finite-time admittance controller is designed to track the trajectory generated by the motion model and to reflect the learned stiffness characteristics. In this controller, a radial basis function neural network (RBFNN) is employed to compensate for the uncertainty of the robot dynamics. Finally, experimental validation is conducted using the ROKAE collaborative robot, confirming the effectiveness of the proposed approach. In summary, the presented framework is suitable for human-robot skill transfer method that require simultaneous consideration of position and stiffness in Euclidean space, as well as orientation on Riemannian manifolds

    Computational techniques to interpret the neural code underlying complex cognitive processes

    Get PDF
    Advances in large-scale neural recording technology have significantly improved the capacity to further elucidate the neural code underlying complex cognitive processes. This thesis aimed to investigate two research questions in rodent models. First, what is the role of the hippocampus in memory and specifically what is the underlying neural code that contributes to spatial memory and navigational decision-making. Second, how is social cognition represented in the medial prefrontal cortex at the level of individual neurons. To start, the thesis begins by investigating memory and social cognition in the context of healthy and diseased states that use non-invasive methods (i.e. fMRI and animal behavioural studies). The main body of the thesis then shifts to developing our fundamental understanding of the neural mechanisms underpinning these cognitive processes by applying computational techniques to ana lyse stable large-scale neural recordings. To achieve this, tailored calcium imaging and behaviour preprocessing computational pipelines were developed and optimised for use in social interaction and spatial navigation experimental analysis. In parallel, a review was conducted on methods for multivariate/neural population analysis. A comparison of multiple neural manifold learning (NML) algorithms identified that non linear algorithms such as UMAP are more adaptable across datasets of varying noise and behavioural complexity. Furthermore, the review visualises how NML can be applied to disease states in the brain and introduces the secondary analyses that can be used to enhance or characterise a neural manifold. Lastly, the preprocessing and analytical pipelines were combined to investigate the neural mechanisms in volved in social cognition and spatial memory. The social cognition study explored how neural firing in the medial Prefrontal cortex changed as a function of the social dominance paradigm, the "Tube Test". The univariate analysis identified an ensemble of behavioural-tuned neurons that fire preferentially during specific behaviours such as "pushing" or "retreating" for the animal’s own behaviour and/or the competitor’s behaviour. Furthermore, in dominant animals, the neural population exhibited greater average firing than that of subordinate animals. Next, to investigate spatial memory, a spatial recency task was used, where rats learnt to navigate towards one of three reward locations and then recall the rewarded location of the session. During the task, over 1000 neurons were recorded from the hippocampal CA1 region for five rats over multiple sessions. Multivariate analysis revealed that the sequence of neurons encoding an animal’s spatial position leading up to a rewarded location was also active in the decision period before the animal navigates to the rewarded location. The result posits that prospective replay of neural sequences in the hippocampal CA1 region could provide a mechanism by which decision-making is supported

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Machine learning–based feature prediction of convergence zones in ocean front environments

    Get PDF
    The convergence zone holds significant importance in deep-sea underwater acoustic propagation, playing a pivotal role in remote underwater acoustic detection and communication. Despite the adaptability and predictive power of machine learning, its practical application in predicting the convergence zone remains largely unexplored. This study aimed to address this gap by developing a high-resolution ocean front-based model for convergence zone prediction. Out of 24 machine learning algorithms tested through K-fold cross-validation, the multilayer perceptron–random forest hybrid demonstrated the highest accuracy, showing its superiority in predicting the convergence zone within a complex ocean front environment. The research findings emphasized the substantial impact of ocean fronts on the convergence zone’s location concerning the sound source. Specifically, they highlighted that in relatively cold (or warm) water, the intensity of the ocean front significantly influences the proximity (or distance) of the convergence zone to the sound source. Furthermore, among the input features, the turning depth emerged as a crucial determinant, contributing more than 25% to the model’s effectiveness in predicting the convergence zone’s distance. The model achieved an accuracy of 82.43% in predicting the convergence zone’s distance with an error of less than 1 km. Additionally, it attained a 77.1% accuracy in predicting the convergence zone’s width within a similar error range. Notably, this prediction model exhibits strong performance and generalizability, capable of discerning evolving trends in new datasets when cross-validated using in situ observation data and information from diverse sea areas

    Applying artificial intelligence to determination of legal age of majority from radiographic

    Get PDF
    Forensic odontologists use biological patterns to estimate chronological age for the judicial system. The age of majority is a legally significant period with a limited set of reliable oral landmarks. Currently, experts rely on the questionable development of third molars to assess whether litigants can be prosecuted as legal adults. Identification of new and novel patterns may illuminate features more dependably indicative of chronological age, which have, until now, remained unseen. Unfortunately, biased perceptions and limited cognitive capacity compromise the ability of researchers to notice new patterns. The present study demonstrates how artificial intelligence can break through identification barriers and generate new estimation modalities. A convolutional neural network was trained with 4003 panoramic-radiographs to sort subjects into 'under-18' and 'over-18' age categories. The resultant architecture identified legal adults with a high predictive accuracy equally balanced between precision, specificity and recall. Moving forward, AI-based methods could improve courtroom efficiency, stand as automated assessment methods and contribute to our understanding of biological ageing.</p

    Graduate Catalog of Studies, 2023-2024

    Get PDF
    • …
    corecore