5 research outputs found

    FDD massive MIMO channel spatial covariance conversion using projection methods

    Full text link
    Knowledge of second-order statistics of channels (e.g. in the form of covariance matrices) is crucial for the acquisition of downlink channel state information (CSI) in massive MIMO systems operating in the frequency division duplexing (FDD) mode. Current MIMO systems usually obtain downlink covariance information via feedback of the estimated covariance matrix from the user equipment (UE), but in the massive MIMO regime this approach is infeasible because of the unacceptably high training overhead. This paper considers instead the problem of estimating the downlink channel covariance from uplink measurements. We propose two variants of an algorithm based on projection methods in an infinite-dimensional Hilbert space that exploit channel reciprocity properties in the angular domain. The proposed schemes are evaluated via Monte Carlo simulations, and they are shown to outperform current state-of-the art solutions in terms of accuracy and complexity, for typical array geometries and duplex gaps.Comment: Paper accepted on 29/01/2018 for presentation at ICASSP 201

    Hybrid data and model driven algorithms for angular power spectrum estimation

    Full text link
    We propose two algorithms that use both models and datasets to estimate angular power spectra from channel covariance matrices in massive MIMO systems. The first algorithm is an iterative fixed-point method that solves a hierarchical problem. It uses model knowledge to narrow down candidate angular power spectra to a set that is consistent with a measured covariance matrix. Then, from this set, the algorithm selects the angular power spectrum with minimum distance to its expected value with respect to a Hilbertian metric learned from data. The second algorithm solves an alternative optimization problem with a single application of a solver for nonnegative least squares programs. By fusing information obtained from datasets and models, both algorithms can outperform existing approaches based on models, and they are also robust against environmental changes and small datasets.Comment: Paper accepted for presentation at IEEE Globecom 2020 - fixed typo in Eq. (15

    Radio Resource Management in Joint Radar and Communication: A Comprehensive Survey

    Full text link
    Joint radar and communication (JRC) has recently attracted substantial attention. The first reason is that JRC allows individual radar and communication systems to share spectrum bands and thus improves the spectrum utilization. The second reason is that JRC enables a single hardware platform, e.g., an autonomous vehicle or a UAV, to simultaneously perform the communication function and the radar function. As a result, JRC is able to improve the efficiency of resources, i.e., spectrum and energy, reduce the system size, and minimize the system cost. However, there are several challenges to be solved for the JRC design. In particular, sharing the spectrum imposes the interference caused by the systems, and sharing the hardware platform and energy resource complicates the design of the JRC transmitter and compromises the performance of each function. To address the challenges, several resource management approaches have been recently proposed, and this paper presents a comprehensive literature review on resource management for JRC. First, we give fundamental concepts of JRC, important performance metrics used in JRC systems, and applications of the JRC systems. Then, we review and analyze resource management approaches, i.e., spectrum sharing, power allocation, and interference management, for JRC. In addition, we present security issues to JRC and provide a discussion of countermeasures to the security issues. Finally, we highlight important challenges in the JRC design and discuss future research directions related to JRC

    A survey on reconfigurable intelligent surfaces: wireless communication perspective

    Get PDF
    Using reconfigurable intelligent surfaces (RISs) to improve the coverage and the data rate of future wireless networks is a viable option. These surfaces are constituted of a significant number of passive and nearly passive components that interact with incident signals in a smart way, such as by reflecting them, to increase the wireless system's performance as a result of which the notion of a smart radio environment comes to fruition. In this survey, a study review of RIS-assisted wireless communication is supplied starting with the principles of RIS which include the hardware architecture, the control mechanisms, and the discussions of previously held views about the channel model and pathloss; then the performance analysis considering different performance parameters, analytical approaches and metrics are presented to describe the RIS-assisted wireless network performance improvements. Despite its enormous promise, RIS confronts new hurdles in integrating into wireless networks efficiently due to its passive nature. Consequently, the channel estimation for, both full and nearly passive RIS and the RIS deployments are compared under various wireless communication models and for single and multi-users. Lastly, the challenges and potential future study areas for the RIS aided wireless communication systems are proposed

    The University of Iowa 2019-20 General Catalog

    Get PDF
    corecore