54,177 research outputs found

    A Chandra View of the Multiple Merger In Abell 2744

    Full text link
    We present a Chandra observation of the merging cluster of galaxies Abell 2744. The cluster shows strong evidence for an ongoing major merger which we believe to be responsible for the radio halo. X-ray emission and temperature maps of the cluster, combined with the spatial and redshift distribution of the galaxies, indicate a roughly north-south axis for the merger, with a significant velocity component along the line of sight. The merger is occurring at a very large velocity, with M = 2-3. In addition, there is a small merging subcluster toward the northwest, unrelated to the major merger, which shows evidence of a bow shock. A hydrodynamical analysis of the subcluster indicates a merger velocity corresponding to a Mach number of ~1.2, consistent with a simple infall model. This infalling subcluster may also be re-exciting electrons in the radio halo. Its small Mach number lends support to turbulent reacceleration models for radio halo formation.Comment: 8 pages, 6 figures (5 color). Submitted to MNRA

    Time-frequency detection of Gravitational Waves

    Get PDF
    We present a time-frequency method to detect gravitational wave signals in interferometric data. This robust method can detect signals from poorly modeled and unmodeled sources. We evaluate the method on simulated data containing noise and signal components. The noise component approximates initial LIGO interferometer noise. The signal components have the time and frequency characteristics postulated by Flanagan and Hughes for binary black hole coalescence. The signals correspond to binaries with total masses between 45M⊙45 M_\odot to 70M⊙70 M_\odot and with (optimal filter) signal-to-noise ratios of 7 to 12. The method is implementable in real time, and achieves a coincident false alarm rate for two detectors ≈\approx 1 per 475 years. At this false alarm rate, the single detector false dismissal rate for our signal model is as low as 5.3% at an SNR of 10. We expect to obtain similar or better detection rates with this method for any signal of similar power that satisfies certain adiabaticity criteria. Because optimal filtering requires knowledge of the signal waveform to high precision, we argue that this method is likely to detect signals that are undetectable by optimal filtering, which is at present the best developed detection method for transient sources of gravitational waves.Comment: 24 pages, 5 figures, uses REVTE

    CO-0.30-0.07: A Peculiar Molecular Clump with an Extremely Broad Velocity Width

    Full text link
    The high velocity dispersion compact cloud CO-0.30-0.07 is a peculiar molecular clump discovered in the central moleculr zone of the Milky Way, which is characterized by its extremely broad velocity emissions (∼145 kms−1\sim 145\ \rm{km s^{-1}}) despite the absence of internal energy sources. We present new interferometric maps of the cloud in multiple molecular lines in frequency ranges of 265--269 GHz and 276--280 GHz obtained using the Sumbmillimeter Array, along with the single-dish images previously obtained with the ASTE 10-m telescope. The data show that the characteristic broad velocity emissions are predominantly confined in two parallel ridges running through the cloud center. The central ridges are tightly anti-correlated with each other in both space and velocity, thereby sharply dividing the entire cloud into two distinct velocity components (+15 km s−1^{-1} and +55 km s−1^{-1}). This morphology is consistent with a model in which the two velocity components collide with a relative velocity of 40 kms−1\mathrm{km s^{-1}} at the interface defined by the central ridges, although an alternative explanation with a highly inclined expanding-ring model is yet to be fully invalidated. We have also unexpectedly detected several compact clumps (≲0.1 \lesssim 0.1\ pc in radius) likely formed by shock compression. The clumps have several features in common with typical star-forming clouds: high densities (106.5−7.5 cm−310^{6.5-7.5}\ \mathrm{cm^{-3}}), rich abundances of hot-core-type molecular species, and relatively narrow velocity widths apparently decoupled from the furious turbulence dominating the cloud. The cloud CO-0.30-0.07 is possibly at an early phase of star formation activity triggered by the shock impact.Comment: 29 pages, 10 figures, accepted for publication in Ap

    A topographic mechanism for arcing of dryland vegetation bands

    Full text link
    Banded patterns consisting of alternating bare soil and dense vegetation have been observed in water-limited ecosystems across the globe, often appearing along gently sloped terrain with the stripes aligned transverse to the elevation gradient. In many cases these vegetation bands are arced, with field observations suggesting a link between the orientation of arcing relative to the grade and the curvature of the underlying terrain. We modify the water transport in the Klausmeier model of water-biomass interactions, originally posed on a uniform hillslope, to qualitatively capture the influence of terrain curvature on the vegetation patterns. Numerical simulations of this modified model indicate that the vegetation bands change arcing-direction from convex-downslope when growing on top of a ridge to convex-upslope when growing in a valley. This behavior is consistent with observations from remote sensing data that we present here. Model simulations show further that whether bands grow on ridges, valleys, or both depends on the precipitation level. A survey of three banded vegetation sites, each with a different aridity level, indicates qualitatively similar behavior.Comment: 26 pages, 13 figures, 2 table
    • …
    corecore