53 research outputs found

    Ridgelets and the representation of mutilated Sobolev functions

    Get PDF
    We show that ridgelets, a system introduced in [E. J. Candes, Appl. Comput. Harmon. Anal., 6(1999), pp. 197–218], are optimal to represent smooth multivariate functions that may exhibit linear singularities. For instance, let {u · x − b > 0} be an arbitrary hyperplane and consider the singular function f(x) = 1{u·x−b>0}g(x), where g is compactly supported with finite Sobolev L2 norm ||g||Hs, s > 0. The ridgelet coefficient sequence of such an object is as sparse as if f were without singularity, allowing optimal partial reconstructions. For instance, the n-term approximation obtained by keeping the terms corresponding to the n largest coefficients in the ridgelet series achieves a rate of approximation of order n−s/d; the presence of the singularity does not spoil the quality of the ridgelet approximation. This is unlike all systems currently in use, especially Fourier or wavelet representations

    Recovering edges in ill-posed inverse problems: optimality of curvelet frames

    Get PDF
    We consider a model problem of recovering a function f(x1,x2)f(x_1,x_2) from noisy Radon data. The function ff to be recovered is assumed smooth apart from a discontinuity along a C2C^2 curve, that is, an edge. We use the continuum white-noise model, with noise level Δ\varepsilon. Traditional linear methods for solving such inverse problems behave poorly in the presence of edges. Qualitatively, the reconstructions are blurred near the edges; quantitatively, they give in our model mean squared errors (MSEs) that tend to zero with noise level Δ\varepsilon only as O(Δ1/2)O(\varepsilon^{1/2}) as Δ→0\varepsilon\to 0. A recent innovation--nonlinear shrinkage in the wavelet domain--visually improves edge sharpness and improves MSE convergence to O(Δ2/3)O(\varepsilon^{2/3}). However, as we show here, this rate is not optimal. In fact, essentially optimal performance is obtained by deploying the recently-introduced tight frames of curvelets in this setting. Curvelets are smooth, highly anisotropic elements ideally suited for detecting and synthesizing curved edges. To deploy them in the Radon setting, we construct a curvelet-based biorthogonal decomposition of the Radon operator and build "curvelet shrinkage" estimators based on thresholding of the noisy curvelet coefficients. In effect, the estimator detects edges at certain locations and orientations in the Radon domain and automatically synthesizes edges at corresponding locations and directions in the original domain. We prove that the curvelet shrinkage can be tuned so that the estimator will attain, within logarithmic factors, the MSE O(Δ4/5)O(\varepsilon^{4/5}) as noise level Δ→0\varepsilon\to 0. This rate of convergence holds uniformly over a class of functions which are C2C^2 except for discontinuities along C2C^2 curves, and (except for log terms) is the minimax rate for that class. Our approach is an instance of a general strategy which should apply in other inverse problems; we sketch a deconvolution example

    Multiresolution analysis using wavelet, ridgelet, and curvelet transforms for medical image segmentation

    Get PDF
    Copyright @ 2011 Shadi AlZubi et al. This article has been made available through the Brunel Open Access Publishing Fund.The experimental study presented in this paper is aimed at the development of an automatic image segmentation system for classifying region of interest (ROI) in medical images which are obtained from different medical scanners such as PET, CT, or MRI. Multiresolution analysis (MRA) using wavelet, ridgelet, and curvelet transforms has been used in the proposed segmentation system. It is particularly a challenging task to classify cancers in human organs in scanners output using shape or gray-level information; organs shape changes throw different slices in medical stack and the gray-level intensity overlap in soft tissues. Curvelet transform is a new extension of wavelet and ridgelet transforms which aims to deal with interesting phenomena occurring along curves. Curvelet transforms has been tested on medical data sets, and results are compared with those obtained from the other transforms. Tests indicate that using curvelet significantly improves the classification of abnormal tissues in the scans and reduce the surrounding noise
    • 

    corecore