181 research outputs found

    Cavitation Induction by Projectile Impacting on a Water Jet

    Get PDF
    The present paper focuses on the simulation of the high-velocity impact of a projectile impacting on a water-jet, causing the onset, development and collapse of cavitation. The simulation of the fluid motion is carried out using an explicit, compressible, density-based solver developed by the authors using the OpenFOAM library. It employs a barotropic two-phase flow model that simulates the phase-change due to cavitation and considers the co-existence of non-condensable and immiscible air. The projectile is considered to be rigid while its motion through the computational domain is modelled through a direct-forcing Immersed Boundary Method. Model validation is performed against the experiments of Field et al. [Field, J., Camus, J. J., Tinguely, M., Obreschkow, D., Farhat, M., 2012. Cavitation in impacted drops and jets and the effect on erosion damage thresholds. Wear 290–291, 154–160. doi:10.1016/j.wear.2012.03.006. URL http://www.sciencedirect.com/science/article/pii/S0043164812000968 ], who visualised cavity formation and shock propagation in liquid impacts at high velocities. Simulations unveil the shock structures and capture the high-speed jetting forming at the impact location, in addition to the subsequent cavitation induction and vapour formation due to refraction waves. Moreover, model predictions provide quantitative information and a better insight on the flow physics that has not been identified from the reported experimental data, such as shock-wave propagation, vapour formation quantity and induced pressures. Furthermore, evidence of the Richtmyer-Meshkov instability developing on the liquid-air interface are predicted when sufficient dense grid resolution is utilised

    Experiments on the Richtmyer–Meshkov instability: single-scale perturbations on a continuous interface

    Get PDF
    We report on experiments to measure the shock-induced growth of sinusoidal perturbations on thick interfaces separating two gases of different densities. The results show that the growth rates are reduced as the interface thickness is increased. A model that accounts for the growth rate reduction caused by the presence of a finite density gradient on the interface is proposed and good agreement is obtained with the experimental results

    Linear simulations of the cylindrical Richtmyer-Meshkov instability in magnetohydrodynamics

    Get PDF
    Numerical simulations and analysis indicate that the Richtmyer-Meshkov instability (RMI) is suppressed in ideal magnetohydrodynamics (MHD) in Cartesian slab geometry. Motivated by the presence of hydrodynamic instabilities in inertial confinement fusion and suppression by means of a magnetic field, we investigate the RMI via linear MHD simulations in cylindrical geometry. The physical setup is that of a Chisnell-type converging shock interacting with a density interface with either axial or azimuthal (2D) perturbations. The linear stability is examined in the context of an initial value problem (with a time-varying base state) wherein the linearized ideal MHD equations are solved with an upwind numerical method. Linear simulations in the absence of a magnetic field indicate that RMI growth rate during the early time period is similar to that observed in Cartesian geometry. However, this RMI phase is short-lived and followed by a Rayleigh-Taylor instability phase with an accompanied exponential increase in the perturbation amplitude. We examine several strengths of the magnetic field (characterized by β = 2p/B ) and observe a significant suppression of the instability for β ≤ 4. The suppression of the instability is attributed to the transport of vorticity away from the interface by Alfvén fronts

    Non-spherical core collapse supernovae III. Evolution towards homology and dependence on the numerical resolution

    Full text link
    (abridged) We study the hydrodynamic evolution of a non-spherical core-collapse supernova in two spatial dimensions. We find that our model displays a strong tendency to expand toward the pole. We demonstrate that this expansion is a physical property of the low-mode, SASI instability. The SASI leaves behind a large lateral velocity gradient in the post shock layer which affects the evolution for minutes and hours later. This results in a prolate deformation of the ejecta and a fast advection of Ni-rich material from moderate latitudes to the polar regions. This effect might actually be responsible for the global asymmetry of the nickel lines in SN 1987A. The simulations demonstrate that significant radial and lateral motions in the post-shock region, produced by convective overturn and the SASI during the early explosion phase, contribute to the evolution for minutes and hours after shock revival. They lead to both later clump formation, and a significant prolate deformation of the ejecta which are observed even as late as one week after the explosion. As pointed out recently by Kjaer et al., such an ejecta morphology is in good agreement with the observational data of SN 1987A. Systematic future studies are needed to investigate how the SASI-induced late-time lateral expansion depends on the dominant mode of the SASI, and to which extent it is affected by the dimensionality of the simulations. The impact on and importance of the SASI for the distribution of iron group nuclei and the morphology of the young SNR argues for future three-dimensional explosion and post-explosion studies on singularity-free grids that cover the entire sphere. Given the results of our 2D resolution study, present 3D simulations must be regarded as underresolved, and their conclusions must be verified by a proper numerical convergence analysis in three dimensions.Comment: 16 pages, 20 figures, accepted for publication in Astronomy & Astrophysic

    Interface Instability and Turbulent Mixing

    Get PDF
    Richtmyer‐Meshkov instability and turbulent mixing are fundamental problems of multi‐materials interface dynamics, which mainly focuses on the growth of perturbation on the interface and mixing of different materials. It is very important in many applications such as inertial confinement fusion, high‐speed combustion, supernova, etc. In this chapter, we will gain advances in understanding this problem by numerical investigations, including the numerical method and program we used, the verification and validation of numerical method and program, the growth laws and mechanics of turbulent mixing, the effects of initial conditions, the dynamic behavior, and some new phenomenon for Richtmyer‐Meshkov instability and turbulent mixing

    Towards a solution of the closure problem for convective atmospheric boundary-layer turbulence

    Get PDF
    We consider the closure problem for turbulence in the dry convective atmospheric boundary layer (CBL). Transport in the CBL is carried by small scale eddies near the surface and large plumes in the well mixed middle part up to the inversion that separates the CBL from the stably stratified air above. An analytically tractable model based on a multivariate Delta-PDF approach is developed. It is an extension of the model of Gryanik and Hartmann [1] (GH02) that additionally includes a term for background turbulence. Thus an exact solution is derived and all higher order moments (HOMs) are explained by second order moments, correlation coefficients and the skewness. The solution provides a proof of the extended universality hypothesis of GH02 which is the refinement of the Millionshchikov hypothesis (quasi- normality of FOM). This refined hypothesis states that CBL turbulence can be considered as result of a linear interpolation between the Gaussian and the very skewed turbulence regimes. Although the extended universality hypothesis was confirmed by results of field measurements, LES and DNS simulations (see e.g. [2-4]), several questions remained unexplained. These are now answered by the new model including the reasons of the universality of the functional form of the HOMs, the significant scatter of the values of the coefficients and the source of the magic of the linear interpolation. Finally, the closures 61 predicted by the model are tested against measurements and LES data. Some of the other issues of CBL turbulence, e.g. familiar kurtosis-skewness relationships and relation of area coverage parameters of plumes (so called filling factors) with HOM will be discussed also

    Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities

    Get PDF
    The interaction of a plane weak shock wave with a single discrete gaseous inhomogeneity is studied as a model of the mechanisms by which finite-amplitude waves in random media generate turbulence and intensify mixing. The experiments are treated as an example of the shock-induced Rayleigh-Taylor instability. or Richtmyer-Meshkov instability, with large initial distortions of the gas interfaces. The inhomogeneities are made by filling large soap bubbles and cylindrical refraction cells (5 cm diameter) whose walls are thin plastic membranes with gases both lighter and heavier than the ambient air in a square (8.9 cm side shock-tube text section. The wavefront geometry and the deformation of the gas volume are visualized by shadowgraph photography. Wave configurations predicted by geometrical acoustics, including the effects of refraction, reflection and diffraction, are compared to the observations. Departures from the predictions of acoustic theory are discussed in terms of gasdynamic nonlinearity. The pressure field on the axis of symmetry downstream of the inhomogeneity is measured by piezoelectric pressure transducers. In the case of a cylindrical or spherical volume filled with heavy low-sound-speed gas the wave which passes through the interior focuses just behind the cylinder. On the other hand, the wave which passes through the light high-sound-speed volume strongly diverges. Visualization of the wavefronts reflected from and diffracted around the inhomogeneities exhibit many features known in optical and acoustic scattering. Rayleigh-Taylor instability induced by shock acceleration deforms the initially circular cross-section of the volume. In the case of the high-sound-speed sphere, a strong vortex ring forms and separates from the main volume of gas. Measurements of the wave and gas-interface velocities are compared to values calculated for one-dimensional interactions and for a simple model of shock-induced Rayleigh-Taylor instability. The circulation and Reynolds number of the vortical structures are calculated from the measured velocities by modeling a piston vortex generator. The results of the flow visualization are also compared with contemporary numerical simulations
    corecore