4,326 research outputs found

    Joint morphological-lexical language modeling for processing morphologically rich languages with application to dialectal Arabic

    Get PDF
    Language modeling for an inflected language such as Arabic poses new challenges for speech recognition and machine translation due to its rich morphology. Rich morphology results in large increases in out-of-vocabulary (OOV) rate and poor language model parameter estimation in the absence of large quantities of data. In this study, we present a joint morphological-lexical language model (JMLLM) that takes advantage of Arabic morphology. JMLLM combines morphological segments with the underlying lexical items and additional available information sources with regards to morphological segments and lexical items in a single joint model. Joint representation and modeling of morphological and lexical items reduces the OOV rate and provides smooth probability estimates while keeping the predictive power of whole words. Speech recognition and machine translation experiments in dialectal-Arabic show improvements over word and morpheme based trigram language models. We also show that as the tightness of integration between different information sources increases, both speech recognition and machine translation performances improve

    Character-Aware Neural Language Models

    Full text link
    We describe a simple neural language model that relies only on character-level inputs. Predictions are still made at the word-level. Our model employs a convolutional neural network (CNN) and a highway network over characters, whose output is given to a long short-term memory (LSTM) recurrent neural network language model (RNN-LM). On the English Penn Treebank the model is on par with the existing state-of-the-art despite having 60% fewer parameters. On languages with rich morphology (Arabic, Czech, French, German, Spanish, Russian), the model outperforms word-level/morpheme-level LSTM baselines, again with fewer parameters. The results suggest that on many languages, character inputs are sufficient for language modeling. Analysis of word representations obtained from the character composition part of the model reveals that the model is able to encode, from characters only, both semantic and orthographic information.Comment: AAAI 201

    What do Neural Machine Translation Models Learn about Morphology?

    Full text link
    Neural machine translation (MT) models obtain state-of-the-art performance while maintaining a simple, end-to-end architecture. However, little is known about what these models learn about source and target languages during the training process. In this work, we analyze the representations learned by neural MT models at various levels of granularity and empirically evaluate the quality of the representations for learning morphology through extrinsic part-of-speech and morphological tagging tasks. We conduct a thorough investigation along several parameters: word-based vs. character-based representations, depth of the encoding layer, the identity of the target language, and encoder vs. decoder representations. Our data-driven, quantitative evaluation sheds light on important aspects in the neural MT system and its ability to capture word structure.Comment: Updated decoder experiment

    Factored Translation Models

    Get PDF

    Joint Morphological and Syntactic Disambiguation

    Get PDF
    In morphologically rich languages, should morphological and syntactic disambiguation be treated sequentially or as a single problem? We describe several efficient, probabilistically interpretable ways to apply joint inference to morphological and syntactic disambiguation using lattice parsing. Joint inference is shown to compare favorably to pipeline parsing methods across a variety of component models. State-of-the-art performance on Hebrew Treebank parsing is demonstrated using the new method. The benefits of joint inference are modest with the current component models, but appear to increase as components themselves improve

    Exploring different representational units in English-to-Turkish statistical machine translation

    Get PDF
    We investigate different representational granularities for sub-lexical representation in statistical machine translation work from English to Turkish. We find that (i) representing both Turkish and English at the morpheme-level but with some selective morpheme-grouping on the Turkish side of the training data, (ii) augmenting the training data with “sentences” comprising only the content words of the original training data to bias root word alignment, (iii) reranking the n-best morpheme-sequence outputs of the decoder with a word-based language model, and (iv) using model iteration all provide a non-trivial improvement over a fully word-based baseline. Despite our very limited training data, we improve from 20.22 BLEU points for our simplest model to 25.08 BLEU points for an improvement of 4.86 points or 24% relative

    What Your Username Says About You

    Full text link
    Usernames are ubiquitous on the Internet, and they are often suggestive of user demographics. This work looks at the degree to which gender and language can be inferred from a username alone by making use of unsupervised morphology induction to decompose usernames into sub-units. Experimental results on the two tasks demonstrate the effectiveness of the proposed morphological features compared to a character n-gram baseline
    corecore