8,779 research outputs found

    A Novel GAN-based Fault Diagnosis Approach for Imbalanced Industrial Time Series

    Full text link
    This paper proposes a novel fault diagnosis approach based on generative adversarial networks (GAN) for imbalanced industrial time series where normal samples are much larger than failure cases. We combine a well-designed feature extractor with GAN to help train the whole network. Aimed at obtaining data distribution and hidden pattern in both original distinguishing features and latent space, the encoder-decoder-encoder three-sub-network is employed in GAN, based on Deep Convolution Generative Adversarial Networks (DCGAN) but without Tanh activation layer and only trained on normal samples. In order to verify the validity and feasibility of our approach, we test it on rolling bearing data from Case Western Reserve University and further verify it on data collected from our laboratory. The results show that our proposed approach can achieve excellent performance in detecting faulty by outputting much larger evaluation scores

    AIOps for a Cloud Object Storage Service

    Full text link
    With the growing reliance on the ubiquitous availability of IT systems and services, these systems become more global, scaled, and complex to operate. To maintain business viability, IT service providers must put in place reliable and cost efficient operations support. Artificial Intelligence for IT Operations (AIOps) is a promising technology for alleviating operational complexity of IT systems and services. AIOps platforms utilize big data, machine learning and other advanced analytics technologies to enhance IT operations with proactive actionable dynamic insight. In this paper we share our experience applying the AIOps approach to a production cloud object storage service to get actionable insights into system's behavior and health. We describe a real-life production cloud scale service and its operational data, present the AIOps platform we have created, and show how it has helped us resolving operational pain points.Comment: 5 page

    Centrality anomalies in complex networks as a result of model over-simplification

    Get PDF
    Tremendous advances have been made in our understanding of the properties and evolution of complex networks. These advances were initially driven by information-poor empirical networks and theoretical analysis of unweighted and undirected graphs. Recently, information-rich empirical data complex networks supported the development of more sophisticated models that include edge directionality and weight properties, and multiple layers. Many studies still focus on unweighted undirected description of networks, prompting an essential question: how to identify when a model is simpler than it must be? Here, we argue that the presence of centrality anomalies in complex networks is a result of model over-simplification. Specifically, we investigate the well-known anomaly in betweenness centrality for transportation networks, according to which highly connected nodes are not necessarily the most central. Using a broad class of network models with weights and spatial constraints and four large data sets of transportation networks, we show that the unweighted projection of the structure of these networks can exhibit a significant fraction of anomalous nodes compared to a random null model. However, the weighted projection of these networks, compared with an appropriated null model, significantly reduces the fraction of anomalies observed, suggesting that centrality anomalies are a symptom of model over-simplification. Because lack of information-rich data is a common challenge when dealing with complex networks and can cause anomalies that misestimate the role of nodes in the system, we argue that sufficiently sophisticated models be used when anomalies are detected.Comment: 14 pages, including 9 figures. APS style. Accepted for publication in New Journal of Physic
    • …
    corecore