262 research outputs found

    Polarimetric Response of Rice Fields at C-Band: Analysis and Phenology Retrieval

    Get PDF
    A set of ten RADARSAT-2 images acquired in fully polarimetric mode over a test site with rice fields in Seville, Spain, has been analyzed to extract the main features of the C-band radar backscatter as a function of rice phenology. After observing the evolutions versus phenology of different polarimetric observables and explaining their behavior in terms of scattering mechanisms present in the scene, a simple retrieval approach has been proposed. This algorithm is based on three polarimetric observables and provides estimates from a set of four relevant intervals of phenological stages. The validation against ground data, carried out at parcel level for a set of six stands and up to nine dates per stand, provides a 96% rate of coincidence. Moreover, an equivalent compact-pol retrieval algorithm has been also proposed and validated, providing the same performance at parcel level. In all cases, the inversion is carried out by exploiting a single satellite acquisition, without any other auxiliary information.This work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO) and European Union FEDER under Project TEC2011-28201-C02-02

    Rice Phenology Monitoring by means of SAR Polarimetry at X-Band

    Get PDF
    The feasibility of retrieving the phenological stage of rice fields at a particular date by employing coherent copolar dual-pol X-band radar images acquired by the TerraSAR-X sensor has been investigated in this paper. A set of polarimetric observables that can be derived from this data type has been studied by using a time series of images gathered during the whole cultivation period of rice. Among the analyzed parameters, besides backscattering coefficients and ratios, we have observed clear signatures in the correlation (in magnitude and phase) between channels in both the linear and Pauli bases, as well as in parameters provided by target decomposition techniques, like entropy and alpha from the eigenvector decomposition. A new model-based decomposition providing estimates of a random volume component plus a polarized contribution has been proposed and employed in interpreting the radar response of rice. By exploiting the signatures of these observables in terms of the phenology of rice, a simple approach to estimate the phenological stage from a single pass has been devised. This approach has been tested with the available data acquired over a site in Spain, where rice is cultivated, ensuring ground is flooded for the whole cultivation cycle, and sowing is carried out by randomly spreading the seeds on the flooded ground. Results are in good agreement with the available ground measurements despite some limitations that exist due to the reduced swath coverage of the dual-pol HHVV mode and the high noise floor of the TerraSAR-X system.This work was supported by the Spanish Ministry of Science and Innovation (MICINN) and EU FEDER under Projects TEC2008-06764-C02-02 and TEC2011-28201-C02-02, by the National Program of Human Resources Movability under Grant PR2009-0364, by the University of Alicante under Project GRE08J01, and by Generalitat Valenciana under Projects GV/2009/079 and ACOMP/2010/082

    Crop Phenology Estimation Using a Multitemporal Model and a Kalman Filtering Strategy

    Get PDF
    In this letter, a new approach for crop phenology estimation with remote sensing is presented. The proposed methodology is aimed to exploit tools from a dynamical system context. From a temporal sequence of images, a geometrical model is derived, which allows us to translate this temporal domain into the estimation problem. The evolution model in state space is obtained through dimensional reduction by a principal component analysis, defining the state variables, of the observations. Then, estimation is achieved by combining the generated model with actual samples in an optimal way using a Kalman filter. As a proof of concept, an example with results obtained with this approach over rice fields by exploiting stacks of TerraSAR-X dual polarization images is shown.This project was supported in part by the Spanish Ministry of Economy and Competitiveness (MINECO) and in part by EU FEDER under Project TEC2011-28201-C02-02

    Spaceborne L-Band Synthetic Aperture Radar Data for Geoscientific Analyses in Coastal Land Applications: A Review

    Get PDF
    The coastal zone offers among the world’s most productive and valuable ecosystems and is experiencing increasing pressure from anthropogenic impacts: human settlements, agriculture, aquaculture, trade, industrial activities, oil and gas exploitation and tourism. Earth observation has great capability to deliver valuable data at the local, regional and global scales and can support the assessment and monitoring of land‐ and water‐related applications in coastal zones. Compared to optical satellites, cloud‐cover does not limit the timeliness of data acquisition with spaceborne Synthetic Aperture Radar (SAR) sensors, which have all‐weather, day and night capabilities. Hence, active radar systems demonstrate great potential for continuous mapping and monitoring of coastal regions, particularly in cloud‐prone tropical and sub‐tropical climates. The canopy penetration capability with long radar wavelength enables L‐band SAR data to be used for coastal terrestrial environments and has been widely applied and investigated for the following geoscientific topics: mapping and monitoring of flooded vegetation and inundated areas; the retrieval of aboveground biomass; and the estimation of soil moisture. Human activities, global population growth, urban sprawl and climate change‐induced impacts are leading to increased pressure on coastal ecosystems causing land degradation, deforestation and land use change. This review presents a comprehensive overview of existing research articles that apply spaceborne L‐band SAR data for geoscientific analyses that are relevant for coastal land applications

    Exploring TanDEM-X Interferometric Products for Crop-Type Mapping

    Get PDF
    The application of satellite single-pass interferometric data to crop-type mapping is demonstrated for the first time in this work. A set of nine TanDEM-X dual-pol pairs of images acquired during its science phase, from June to August 2015, is exploited for this purpose. An agricultural site located in Sevilla (Spain), composed of fields of 13 different crop species, is employed for validation. Sets of input features formed by polarimetric and interferometric observables are tested for crop classification, including single-pass coherence and repeat-pass coherence formed by consecutive images. The backscattering coefficient at HH and VV channels and the correlation between channels form the set of polarimetric features employed as a reference set upon which the added value of interferometric coherence is evaluated. The inclusion of single-pass coherence as feature improves by 2% the overall accuracy (OA) with respect to the reference case, reaching 92%. More importantly, in single-pol configurations OA increases by 10% for the HH channel and by 8% for the VV channel, reaching 87% and 88%, respectively. Repeat-pass coherence also improves the classification performance, but with final scores slightly worse than with single-pass coherence. However, it improves the individual performance of the backscattering coefficient by 6–7%. Furthermore, in products evaluated at field level the dual-pol repeat-pass coherence features provide the same score as single-pass coherence features (overall accuracy above 94%). Consequently, the contribution of interferometry, both single-pass and repeat-pass, to crop-type mapping is proved.This work was funded by the Spanish Ministry of Science and Innovation, the State Agency of Research (AEI) and the European Funds for Regional Development (EFRD) under Project TEC2017-85244-C2-1-P, and by the European Commission, H2020 Programme, under Project MOSES (Managing crOp water Saving with Enterprise Services)

    Monitoring Rice Phenology Based on Backscattering Characteristics of Multi-Temporal RADARSAT-2 Datasets

    Get PDF
    Accurate estimation and monitoring of rice phenology is necessary for the management and yield prediction of rice. The radar backscattering coefficient, one of the most direct and accessible parameters has been proved to be capable of retrieving rice growth parameters. This paper aims to investigate the possibility of monitoring the rice phenology (i.e., transplanting, vegetative, reproductive, and maturity) using the backscattering coefficients or their simple combinations of multi-temporal RADARSAT-2 datasets only. Four RADARSAT-2 datasets were analyzed at 30 sample plots in Meishan City, Sichuan Province, China. By exploiting the relationships of the backscattering coefficients and their combinations versus the phenology of rice, HH/VV, VV/VH, and HH/VH ratios were found to have the greatest potential for phenology monitoring. A decision tree classifier was applied to distinguish the four phenological phases, and the classifier was effective. The validation of the classifier indicated an overall accuracy level of 86.2%. Most of the errors occurred in the vegetative and reproductive phases. The corresponding errors were 21.4% and 16.7%, respectively

    Influence of Incidence Angle on the Coherent Copolar Polarimetric Response of Rice at X-Band

    Get PDF
    The coherent nature of the acquisition by TerraSAR-X of both copolar channels (HH and VV) enables the generation of many different polarimetric observables with physical interpretation, as have recently been used for monitoring rice fields. In this letter, the influence of incidence angle upon these polarimetric observables is analyzed by comparing three stacks of images that were acquired simultaneously at different incidence angles (22°, 30°, and 40°) during a whole cultivation campaign. We show that the response of observables related to dominance (entropy, ratios of components) and type of scattering mechanisms (alpha angles) is not greatly influenced by incidence angle at some stages: early and advanced vegetative phases, and maturation. Moreover, the acquisition geometry drives the sensitivity to the presence of the initial stems and tillers, being detected earlier at shallower angles. This analysis is a necessary step before studying potential methodologies for combining different orbits and beams for reducing the time between acquisitions for monitoring purposes.This work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO) and EU FEDER under Project TEC2011-28201-C02-02, and by the Generalitat Valenciana under Project ACOMP/2014/136

    Monitoring wetlands and water bodies in semi-arid Sub-Saharan regions

    Get PDF
    Surface water in wetlands is a critical resource in semi-arid West-African regions that are frequently exposed to droughts. Wetlands are of utmost importance for the population as well as the environment, and are subject to rapidly changing seasonal fluctuations. Dynamics of wetlands in the study area are still poorly understood, and the potential of remote sensing-derived information as a large-scale, multi-temporal, comparable and independent measurement source is not exploited. This work shows successful wetland monitoring with remote sensing in savannah and Sahel regions in Burkina Faso, focusing on the main study site Lac Bam (Lake Bam). Long-term optical time series from MODIS with medium spatial resolution (MR), and short-term synthetic aperture radar (SAR) time series from TerraSAR-X and RADARSAT-2 with high spatial resolution (HR) successfully demonstrate the classification and dynamic monitoring of relevant wetland features, e.g. open water, flooded vegetation and irrigated cultivation. Methodological highlights are time series analysis, e.g. spatio-temporal dynamics or multitemporal-classification, as well as polarimetric SAR (polSAR) processing, i.e. the Kennaugh elements, enabling physical interpretation of SAR scattering mechanisms for dual-polarized data. A multi-sensor and multi-frequency SAR data combination provides added value, and reveals that dual-co-pol SAR data is most recommended for monitoring wetlands of this type. The interpretation of environmental or man-made processes such as water areas spreading out further but retreating or evaporating faster, co-occurrence of droughts with surface water and vegetation anomalies, expansion of irrigated agriculture or new dam building, can be detected with MR optical and HR SAR time series. To capture long-term impacts of water extraction, sedimentation and climate change on wetlands, remote sensing solutions are available, and would have great potential to contribute to water management in Africa

    Crop Growth Monitoring by Hyperspectral and Microwave Remote Sensing

    Get PDF
    Methoden und Techniken der Fernerkundung fungieren als wichtige Hilfsmittel im regionalen Umweltmanagement. Um diese zu optimieren, untersucht die folgende Arbeit sowohl die Verwendung als auch Synergien verschiedener Sensoren aus unterschiedlichen Wellenlängenbereichen. Der Fokus liegt auf der Modellentwicklung zur Ableitung von Pflanzenparametern aus fernerkundlichen Bestandsmessungen sowie auf deren Bewertung. Zu den verwendeten komplementären Fernerkundungssystemen zählen die Sensoren EO-1 Hyperion und ALI, Envisat ASAR sowie TerraSAR-X. Für die optischen Hyper- und Multispektralsysteme werden die Reflexion verschiedener Spektralbereiche sowie die Performanz der daraus abgeleiteten Vegetationsindizes untersucht und bewertet. Im Hinblick auf die verwendeten Radarsysteme konzentriert sich die Untersuchung auf Parameter wie Wellenlänge, Einfallswinkel, Radarrückstreuung und Polarisation. Die Eigenschaften verschiedener Parameterkombinationen werden hierbei dargestellt und der komplementäre Beitrag der Radarfernerkundung zur Wachstumsüberwachung bewertet. Hierzu wurden zwei Testgebiete, eines für Winterweizen in der Nordchinesischen Tiefebene und eines für Reis im Nordosten Chinas ausgewählt. In beiden Gebieten wurden während der Wachstumsperioden umfangreiche Feldmessungen von Bestandsparametern während der Satellitenüberflüge oder zeitnah dazu durchgeführt. Mit Hilfe von linearen Regressionsmodellen zwischen Satellitendaten und Biomasse wird die Sensitivität hyperspektraler Reflexion und Radarrückstreuung im Hinblick auf das Wachstum des Winterweizens untersucht. Für die optischen Daten werden drei verschiedene Modelvarianten untersucht: traditionelle Vegetationsindices berechnet aus Multispektraldaten, traditionelle Vegetationsindices berechnet aus Hyperspektraldaten sowie die Berechnung von Normalised Ratio Indices (NRI) basierend auf allen möglichen 2-Band Kombinationen im Spektralbereich zwischen 400 und 2500 nm. Weiterhin wird die gemessene Biomasse mit der gleichpolarisierten (VV) C-Band Rückstreuung des Envisat ASAR Sensors linear in Beziehung gesetzt. Um den komplementären Informationsgehalt von Hyperspektral und Radardaten zu nutzen, werden optische und Radardaten für die Parameterableitung kombiniert eingesetzt. Das Hauptziel für das Reisanbaugebiet im Nordosten Chinas ist das Verständnis über die kohärente Dualpolarimetrische X-Band Rückstreuung zu verschiedenen phänologischen Wachstumsstadien. Hierfür werden die gleichpolarisierte TerraSAR-X Rückstreuung (HH und VV) sowie abgeleitete polarimetrische Parameter untersucht und mit verschiedenen Ebenen im Bestand in Beziehung gesetzt. Weiterhin wird der Einfluss der Variation von Einfallswinkel und Auflösung auf die Bestandsparameterableitung quantifiziert. Neben der Signatur von HH und VV ermöglichen vor allem die polarimetrischen Parameter Phasendifferenz, Ratio, Koherenz und Entropy-Alpha die Bestimmung bestimmter Wachstumsstadien. Die Ergebnisse der Arbeit zeigen, dass die komplementären Fernerkundungssysteme Optik und Radar die Ableitung von Pflanzenparametern und die Bestimmung von Heterogenitäten in den Beständen ermöglichen. Die Synergien diesbezüglich müssen auch in Zukunft weiter untersucht werden, da neue und immer variablere Fernerkundungssysteme zur Verfügung stehen werden und das Umweltmanagement weiter verbessern können

    Potential of X-Band Images from High-Resolution Satellite SAR Sensors to Assess Growth and Yield in Paddy Rice

    Get PDF
    The comprehensive relationship of backscattering coefficient (σ0) values from two current X-band SAR sensors (COSMO-SkyMed and TerraSAR-X) with canopy biophysical variables were investigated using the SAR images acquired at VV polarization and shallow incidence angles. The difference and consistency of the two sensors were also examined. The chrono-sequential change of σ0 in rice paddies during the transplanting season revealed that σ0 reached the value of nearby water surfaces a day before transplanting, and increased significantly just after transplanting event (3 dB). Despite a clear systematic shift (6.6 dB) between the two sensors, the differences in σ0 between target surfaces and water surfaces in each image were comparable in both sensors. Accordingly, an image-based approach using the “water-point” was proposed. It would be useful especially when absolute σ0 values are not consistent between sensors and/or images. Among the various canopy variables, the panicle biomass was found to be best correlated with X-band σ0. X-band SAR would be promising for direct assessments of rice grain yields at regional scales from space, whereas it would have limited capability to assess the whole-canopy variables only during the very early growth stages. The results provide a clear insight on the potential capability of X-band SAR sensors for rice monitoring
    corecore