23 research outputs found

    An Equivariant Observer Design for Visual Localisation and Mapping

    Full text link
    This paper builds on recent work on Simultaneous Localisation and Mapping (SLAM) in the non-linear observer community, by framing the visual localisation and mapping problem as a continuous-time equivariant observer design problem on the symmetry group of a kinematic system. The state-space is a quotient of the robot pose expressed on SE(3) and multiple copies of real projective space, used to represent both points in space and bearings in a single unified framework. An observer with decoupled Riccati-gains for each landmark is derived and we show that its error system is almost globally asymptotically stable and exponentially stable in-the-large.Comment: 12 pages, 2 figures, published in 2019 IEEE CD

    Equivariant Filter (EqF): A General Filter Design for Systems on Homogeneous Spaces

    Get PDF
    The kinematics of many mechanical systems encountered in robotics and other fields, such as single-bearing attitude estimation and SLAM, are naturally posed on homogeneous spaces: That is, their state lies in a smooth manifold equipped with a transitive Lie-group symmetry. This paper shows that any system posed in a homogeneous space can be extended to a larger system that is equivariant under a symmetry action. The equivariant structure of the system is exploited to propose a novel new filter, the Equivariant Filter (EqF), based on linearisation of global error dynamics derived from the symmetry action. The EqF is applied to an example of estimating the positions of stationary landmarks relative to a moving monocular camera that is intractable for previously proposed symmetry based filter design methodologie

    Data assimilation for linear parabolic equations: minimax projection method

    Get PDF
    International audienceIn this paper we propose a state estimation method for linear parabolic partial differential equations (PDE) that accounts for errors in the model, truncation, and observations. It is based on an extension of the Galerkin projection method. The extended method models projection coefficients, representing the state of the PDE in some basis, by means of a differential-algebraic equation (DAE). The original estimation problem for the PDE is then recast as a state estimation problem for the constructed DAE using a linear continuous minimax filter. We construct a numerical time integrator that preserves the monotonic decay of a nonstationary Lyapunov function along the solution. To conclude, we demonstrate the efficacy of the proposed method by applying it to the tracking of a discharged pollutant slick in a two-dimensional fluid

    Widely Linear State Space Filtering of Improper Complex Signals

    Get PDF
    Complex signals are the backbone of many modern applications, such as power systems, communication systems, biomedical sciences and military technologies. However, standard complex valued signal processing approaches are suited to only a subset of complex signals known as proper, and are inadequate of the generality of complex signals, as they do not fully exploit the available information. This is mainly due to the inherent blindness of the algorithms to the complete second order statistics of the signals, or due to under-modelling of the underlying system. The aim of this thesis is to provide enhanced complex valued, state space based, signal processing solutions for the generality of complex signals and systems. This is achieved based on the recent advances in the so called augmented complex statistics and widely linear modelling, which have brought to light the limitations of conventional statistical complex signal processing approaches. Exploiting these developments, we propose a class of widely linear adaptive state space estimation techniques, which provide a unified framework and enhanced performance for the generality of complex signals, compared with conventional approaches. These include the linear and nonlinear Kalman and particle filters, whereby it is shown that catering for the complete second order information and system models leads to significant performance gains. The proposed techniques are also extended to the case of cooperative distributed estimation, where nodes in a network collaborate locally to estimate signals, under a framework that caters for general complex signals, as well as the cross-correlations between observation noises, unlike earlier solutions. The analysis of the algorithms are supported by numerous case studies, including frequency estimation in three phase power systems, DIFAR sonobuoy underwater target tracking, and real-world wind modeling and prediction.Open Acces
    corecore