1,727 research outputs found

    No complete linear term rewriting system for propositional logic

    Get PDF
    International audienceRecently it has been observed that the set of all sound linear inference rules in propositional logic is already coNP-complete, i.e. that every Boolean tautology can be written as a (left-and right-) linear rewrite rule. This raises the question of whether there is a rewriting system on linear terms of propositional logic that is sound and complete for the set of all such rewrite rules. We show in this paper that, as long as reduction steps are polynomial-time decidable, such a rewriting system does not exist unless coNP = NP. We draw tools and concepts from term rewriting, Boolean function theory and graph theory in order to access the required intermediate results. At the same time we make several connections between these areas that, to our knowledge, have not yet been presented and constitute a rich theoretical framework for reasoning about linear TRSs for propositional logic. 1998 ACM Subject Classification F.4 Mathematical Logic and Formal Language

    No complete linear term rewriting system for propositional logic

    Get PDF
    Recently it has been observed that the set of all sound linear inference rules in propositional logic is already coNP-complete, i.e. that every Boolean tautology can be written as a (left- and right-) linear rewrite rule. This raises the question of whether there is a rewriting system on linear terms of propositional logic that is sound and complete for the set of all such rewrite rules. We show in this paper that, as long as reduction steps are polynomial-time decidable, such a rewriting system does not exist unless coNP=NP. We draw tools and concepts from term rewriting, Boolean function theory and graph theory in order to access the required intermediate results. At the same time we make several connections between these areas that, to our knowledge, have not yet been presented and constitute a rich theoretical framework for reasoning about linear TRSs for propositional logic

    On the relative proof complexity of deep inference via atomic flows

    Get PDF
    We consider the proof complexity of the minimal complete fragment, KS, of standard deep inference systems for propositional logic. To examine the size of proofs we employ atomic flows, diagrams that trace structural changes through a proof but ignore logical information. As results we obtain a polynomial simulation of versions of Resolution, along with some extensions. We also show that these systems, as well as bounded-depth Frege systems, cannot polynomially simulate KS, by giving polynomial-size proofs of certain variants of the propositional pigeonhole principle in KS.Comment: 27 pages, 2 figures, full version of conference pape

    On linear rewriting systems for Boolean logic and some applications to proof theory

    Get PDF
    Linear rules have played an increasing role in structural proof theory in recent years. It has been observed that the set of all sound linear inference rules in Boolean logic is already coNP-complete, i.e. that every Boolean tautology can be written as a (left- and right-)linear rewrite rule. In this paper we study properties of systems consisting only of linear inferences. Our main result is that the length of any 'nontrivial' derivation in such a system is bound by a polynomial. As a consequence there is no polynomial-time decidable sound and complete system of linear inferences, unless coNP=NP. We draw tools and concepts from term rewriting, Boolean function theory and graph theory in order to access some required intermediate results. At the same time we make several connections between these areas that, to our knowledge, have not yet been presented and constitute a rich theoretical framework for reasoning about linear TRSs for Boolean logic.Comment: 27 pages, 3 figures, special issue of RTA 201

    New Minimal Linear Inferences in Boolean Logic Independent of Switch and Medial

    Get PDF
    A linear inference is a valid inequality of Boolean algebra in which each variable occurs at most once on each side. Equivalently, it is a linear rewrite rule on Boolean terms that constitutes a valid implication. Linear inferences have played a significant role in structural proof theory, in particular in models of substructural logics and in normalisation arguments for deep inference proof systems. Systems of linear logic and, later, deep inference are founded upon two particular linear inferences, switch : x ? (y ? z) ? (x ? y) ? z, and medial : (w ? x) ? (y ? z) ? (w ? y) ? (x ? z). It is well-known that these two are not enough to derive all linear inferences (even modulo all valid linear equations), but beyond this little more is known about the structure of linear inferences in general. In particular despite recurring attention in the literature, the smallest linear inference not derivable under switch and medial ("switch-medial-independent") was not previously known. In this work we leverage recently developed graphical representations of linear formulae to build an implementation that is capable of more efficiently searching for switch-medial-independent inferences. We use it to find two "minimal" 8-variable independent inferences and also prove that no smaller ones exist; in contrast, a previous approach based directly on formulae reached computational limits already at 7 variables. One of these new inferences derives some previously found independent linear inferences. The other exhibits structure seemingly beyond the scope of previous approaches we are aware of; in particular, its existence contradicts a conjecture of Das and Strassburger
    • …
    corecore