299,231 research outputs found

    Complexity Analysis of Precedence Terminating Infinite Graph Rewrite Systems

    Full text link
    The general form of safe recursion (or ramified recurrence) can be expressed by an infinite graph rewrite system including unfolding graph rewrite rules introduced by Dal Lago, Martini and Zorzi, in which the size of every normal form by innermost rewriting is polynomially bounded. Every unfolding graph rewrite rule is precedence terminating in the sense of Middeldorp, Ohsaki and Zantema. Although precedence terminating infinite rewrite systems cover all the primitive recursive functions, in this paper we consider graph rewrite systems precedence terminating with argument separation, which form a subclass of precedence terminating graph rewrite systems. We show that for any precedence terminating infinite graph rewrite system G with a specific argument separation, both the runtime complexity of G and the size of every normal form in G can be polynomially bounded. As a corollary, we obtain an alternative proof of the original result by Dal Lago et al.Comment: In Proceedings TERMGRAPH 2014, arXiv:1505.06818. arXiv admin note: text overlap with arXiv:1404.619

    Argument filterings and usable rules in higher-order rewrite systems

    Get PDF
    The static dependency pair method is a method for proving the termination of higher-order rewrite systems a la Nipkow. It combines the dependency pair method introduced for first-order rewrite systems with the notion of strong computability introduced for typed lambda-calculi. Argument filterings and usable rules are two important methods of the dependency pair framework used by current state-of-the-art first-order automated termination provers. In this paper, we extend the class of higher-order systems on which the static dependency pair method can be applied. Then, we extend argument filterings and usable rules to higher-order rewriting, hence providing the basis for a powerful automated termination prover for higher-order rewrite systems

    Using groups for investigating rewrite systems

    Full text link
    We describe several technical tools that prove to be efficient for investigating the rewrite systems associated with a family of algebraic laws, and might be useful for more general rewrite systems. These tools consist in introducing a monoid of partial operators, listing the monoid relations expressing the possible local confluence of the rewrite system, then introducing the group presented by these relations, and finally replacing the initial rewrite system with a internal process entirely sitting in the latter group. When the approach can be completed, one typically obtains a practical method for constructing algebras satisfying prescribed laws and for solving the associated word problem

    Decreasing Diagrams for Confluence and Commutation

    Full text link
    Like termination, confluence is a central property of rewrite systems. Unlike for termination, however, there exists no known complexity hierarchy for confluence. In this paper we investigate whether the decreasing diagrams technique can be used to obtain such a hierarchy. The decreasing diagrams technique is one of the strongest and most versatile methods for proving confluence of abstract rewrite systems. It is complete for countable systems, and it has many well-known confluence criteria as corollaries. So what makes decreasing diagrams so powerful? In contrast to other confluence techniques, decreasing diagrams employ a labelling of the steps with labels from a well-founded order in order to conclude confluence of the underlying unlabelled relation. Hence it is natural to ask how the size of the label set influences the strength of the technique. In particular, what class of abstract rewrite systems can be proven confluent using decreasing diagrams restricted to 1 label, 2 labels, 3 labels, and so on? Surprisingly, we find that two labels suffice for proving confluence for every abstract rewrite system having the cofinality property, thus in particular for every confluent, countable system. Secondly, we show that this result stands in sharp contrast to the situation for commutation of rewrite relations, where the hierarchy does not collapse. Thirdly, investigating the possibility of a confluence hierarchy, we determine the first-order (non-)definability of the notion of confluence and related properties, using techniques from finite model theory. We find that in particular Hanf's theorem is fruitful for elegant proofs of undefinability of properties of abstract rewrite systems

    Complex Networks from Simple Rewrite Systems

    Full text link
    Complex networks are all around us, and they can be generated by simple mechanisms. Understanding what kinds of networks can be produced by following simple rules is therefore of great importance. We investigate this issue by studying the dynamics of extremely simple systems where are `writer' moves around a network, and modifies it in a way that depends upon the writer's surroundings. Each vertex in the network has three edges incident upon it, which are colored red, blue and green. This edge coloring is done to provide a way for the writer to orient its movement. We explore the dynamics of a space of 3888 of these `colored trinet automata' systems. We find a large variety of behaviour, ranging from the very simple to the very complex. We also discover simple rules that generate forms which are remarkably similar to a wide range of natural objects. We study our systems using simulations (with appropriate visualization techniques) and analyze selected rules mathematically. We arrive at an empirical classification scheme which reveals a lot about the kinds of dynamics and networks that can be generated by these systems
    corecore