95 research outputs found

    Rewrite Closure and CF Hedge Automata

    Get PDF
    We introduce an extension of hedge automata called bidimensional context-free hedge automata. The class of unranked ordered tree languages they recognize is shown to be preserved by rewrite closure with inverse-monadic rules. We also extend the parameterized rewriting rules used for modeling the W3C XQuery Update Facility in previous works, by the possibility to insert a new parent node above a given node. We show that the rewrite closure of hedge automata languages with these extended rewriting systems are context-free hedge languages

    Rewrite based Verification of XML Updates

    Get PDF
    We consider problems of access control for update of XML documents. In the context of XML programming, types can be viewed as hedge automata, and static type checking amounts to verify that a program always converts valid source documents into also valid output documents. Given a set of update operations we are particularly interested by checking safety properties such as preservation of document types along any sequence of updates. We are also interested by the related policy consistency problem, that is detecting whether a sequence of authorized operations can simulate a forbidden one. We reduce these questions to type checking problems, solved by computing variants of hedge automata characterizing the set of ancestors and descendants of the initial document type for the closure of parameterized rewrite rules

    08171 Abstracts Collection -- Beyond the Finite: New Challenges in Verification and Semistructured Data

    Get PDF
    From 20.04. to 25.04.2008, the Dagstuhl Seminar 08171 ``Beyond the Finite: New Challenges in Verification and Semistructured Data\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Completing Queries: Rewriting of IncompleteWeb Queries under Schema Constraints

    Get PDF
    Reactive Web systems, Web services, and Web-based publish/ subscribe systems communicate events as XML messages, and in many cases require composite event detection: it is not sufficient to react to single event messages, but events have to be considered in relation to other events that are received over time. Emphasizing language design and formal semantics, we describe the rule-based query language XChangeEQ for detecting composite events. XChangeEQ is designed to completely cover and integrate the four complementary querying dimensions: event data, event composition, temporal relationships, and event accumulation. Semantics are provided as model and fixpoint theories; while this is an established approach for rule languages, it has not been applied for event queries before

    First-order logic for safety verification of hedge rewriting systems

    Get PDF
    In this paper we deal with verification of safety properties of hedge rewriting systems and their generalizations. The verification problem is translated to a purely logical problem of finding a finite countermodel for a first-order formula, which is further tackled by a generic finite model finding procedure. We show that the proposed approach is at least as powerful as the methods using regular invariants. At the same time the finite countermodel method is shown to be efficient and applicable to the wide range of systems, including the protocols operating on unranked trees

    One-variable context-free hedge automata

    Get PDF
    International audienceWe introduce an extension of hedge automata called One-Variable Context-Free Hedge Automata. The class of unranked ordered tree languages they recognize has polynomial membership problem and is preserved by rewrite closure with inverse-monadic rules. We also propose a modeling of primitives of the W3C XQuery Update Facility by mean of parameterized rewriting rules, and show that the rewrite closure of a context-free hedge language with these extended rewriting systems is a context-free hedge language. This result is applied to static analysis of XML access control policies expressed with update primitives

    Equational approximations for tree automata completion

    Get PDF
    AbstractIn this paper we deal with the verification of safety properties of infinite-state systems modeled by term rewriting systems. An over-approximation of the set of reachable terms of a term rewriting system R is obtained by automatically constructing a finite tree automaton. The construction is parameterized by a set E of equations on terms, and we also show that the approximating automata recognize at most the set of R/E-reachable terms. Finally, we present some experiments carried out with the implementation of our algorithm. In particular, we show how some approximations from the literature can be defined using equational approximations

    Rewrite based Verification of XML Updates

    Get PDF
    We consider problems of access control for update of XML documents. In the context of XML programming, types can be viewed as hedge automata, and static type checking amounts to verify that a program always converts valid source documents into also valid output documents. Given a set of update operations we are particularly interested by checking safety properties such as preservation of document types along any sequence of updates. We are also interested by the related policy consistency problem, that is detecting whether a sequence of authorized operations can simulate a forbidden one. We reduce these questions to type checking problems, solved by computing variants of hedge automata characterizing the set of ancestors and descendants of the initial document type for the closure of parameterized rewrite rules

    Automata for Unordered Trees

    Get PDF
    International audienceWe present a framework for defining automata for unordereddata trees that is parametrized by the way in which multisets of children nodes are described. Presburger tree automata and alternatingPresburger tree automata are particular instances. We establish the usual equivalence in expressiveness of tree automata and MSO for the automata defined inour framework.We then investigate subclasses of automata for unordered treesfor which testing language equivalence is in P-time. For this we start from automata in our framework that describe multisets of childrenby finite automata, and propose two approaches of how todo this deterministically. We show that a restriction to confluent horizontal evaluation leads to polynomial-time emptiness and universality, but still suffers fromcoNP-completeness of the emptiness of binary intersections. Finally, efficient algorithms can be obtained by imposing an order of horizontal evaluation globally for all automata in the class. Depending onthe choice of the order, we obtain different classes of automata, eachof which has the same expressiveness as Counting MSO

    13th international workshop on expressiveness in concurrency

    Get PDF
    • 

    corecore