35 research outputs found

    Lossy Compressive Sensing Based on Online Dictionary Learning

    Get PDF
    In this paper, a lossy compression of hyperspectral images is realized by using a novel online dictionary learning method in which three dimensional datasets can be compressed. This online dictionary learning method and blind compressive sensing (BCS) algorithm are combined in a hybrid lossy compression framework for the first time in the literature. According to the experimental results, BCS algorithm has the best compression performance when the compression bit rate is higher than or equal to 0.5 bps. Apart from observing rate-distortion performance, anomaly detection performance is also tested on the reconstructed images to measure the information preservation performance

    Remote sensing image fusion via compressive sensing

    Get PDF
    In this paper, we propose a compressive sensing-based method to pan-sharpen the low-resolution multispectral (LRM) data, with the help of high-resolution panchromatic (HRP) data. In order to successfully implement the compressive sensing theory in pan-sharpening, two requirements should be satisfied: (i) forming a comprehensive dictionary in which the estimated coefficient vectors are sparse; and (ii) there is no correlation between the constructed dictionary and the measurement matrix. To fulfill these, we propose two novel strategies. The first is to construct a dictionary that is trained with patches across different image scales. Patches at different scales or equivalently multiscale patches provide texture atoms without requiring any external database or any prior atoms. The redundancy of the dictionary is removed through K-singular value decomposition (K-SVD). Second, we design an iterative l1-l2 minimization algorithm based on alternating direction method of multipliers (ADMM) to seek the sparse coefficient vectors. The proposed algorithm stacks missing high-resolution multispectral (HRM) data with the captured LRM data, so that the latter is used as a constraint for the estimation of the former during the process of seeking the representation coefficients. Three datasets are used to test the performance of the proposed method. A comparative study between the proposed method and several state-of-the-art ones shows its effectiveness in dealing with complex structures of remote sensing imagery

    Accurate tensor completion via adaptive low-rank representation

    Get PDF
    Date of publication December 30, 2019; date of current version October 6, 2020Low-rank representation-based approaches that assume low-rank tensors and exploit their low-rank structure with appropriate prior models have underpinned much of the recent progress in tensor completion. However, real tensor data only approximately comply with the low-rank requirement in most cases, viz., the tensor consists of low-rank (e.g., principle part) as well as non-low-rank (e.g., details) structures, which limit the completion accuracy of these approaches. To address this problem, we propose an adaptive low-rank representation model for tensor completion that represents low-rank and non-low-rank structures of a latent tensor separately in a Bayesian framework. Specifically, we reformulate the CANDECOMP/PARAFAC (CP) tensor rank and develop a sparsity-induced prior for the low-rank structure that can be used to determine tensor rank automatically. Then, the non-low-rank structure is modeled using a mixture of Gaussians prior that is shown to be sufficiently flexible and powerful to inform the completion process for a variety of real tensor data. With these two priors, we develop a Bayesian minimum mean-squared error estimate framework for inference. The developed framework can capture the important distinctions between low-rank and non-low-rank structures, thereby enabling more accurate model, and ultimately, completion. For various applications, compared with the state-of-the-art methods, the proposed model yields more accurate completion results.Lei Zhang, Wei Wei, Qinfeng Shi, Chunhua Shen, Anton van den Hengel, and Yanning Zhan

    Nonconvex Optimization Algorithms for Structured Matrix Estimation in Large-Scale Data Applications

    Get PDF
    Το πρόβλημα της εκτίμησης δομημένου πίνακα ανήκει στην κατηγορία των προβλημάτων εύρεσης αναπαραστάσεων χαμηλής διάστασης (low-dimensional embeddings) σε δεδομένα υψηλής διάστασης. Στις μέρες μας συναντάται σε μια πληθώρα εφαρμογών που σχετίζονται με τις ερευνητικές περιοχές της επεξεργασίας σήματος και της μηχανικής μάθησης. Στην παρούσα διατριβή προτείνονται νέοι μαθηματικοί φορμαλισμοί σε τρία διαφορετικά προβλήματα εκτίμησης δομημένων πινάκων από δεδομένα μεγάλης κλίμακας. Πιο συγκεκριμένα, μελετώνται τα ερευνητικά προβλήματα α) της εκτίμησης πίνακα που είναι ταυτόχρονα αραιός, χαμηλού βαθμού και μη-αρνητικός, β) της παραγοντοποίησης πίνακα χαμηλού βαθμού, και γ) της ακολουθιακής (online) εκτίμησης πίνακα υποχώρου (subspace matrix) χαμηλού βαθμού από ελλιπή δεδομένα. Για όλα τα προβλήματα αυτά προτείνονται καινoτόμοι και αποδοτικοί αλγόριθμοι βελτιστοποίησης (optimization algorithms). Βασική υπόθεση που υιοθετείται σε κάθε περίπτωση είναι πως τα δεδομένα έχουν παραχθεί με βάση ένα γραμμικό μοντέλο. Το σύνολο των προσεγγίσεων που ακολουθούνται χαρακτηρίζονται από μη-κυρτότητα. Όπως γίνεται φανερό στην παρούσα διατριβή, η ιδιότητα αυτή, παρά τις δυσκολίες που εισάγει στην θεωρητική τεκμηρίωση των προτεινόμενων μεθόδων (σε αντίθεση με τις κυρτές προσεγγίσεις στις οποίες η θεωρητική ανάλυση είναι σχετικά ευκολότερη), οδηγεί σε σημαντικά οφέλη όσον αφορά την απόδοσή τους σε πλήθος πραγματικών εφαρμογών. Για την εκτίμηση πίνακα που είναι ταυτόχρονα αραιός, χαμηλού βαθμού και μη-αρνητικός, προτείνονται στην παρούσα διατριβή τρεις νέοι αλγόριθμοι, από τους οποίους οι δύο πρώτοι ελαχιστοποιούν μια κοινή συνάρτηση κόστους και ο τρίτος μια ελαφρώς διαφορετική συνάρτηση κόστους. Κοινό χαρακτηριστικό και των δύο αυτών συναρτήσεων είναι ότι κατά βάση αποτελούνται από έναν όρο προσαρμογής στα δεδομένα και δύο όρους κανονικοποίησης, οι οποίοι χρησιμοποιούνται για την επιβολή αραιότητας και χαμηλού βαθμού, αντίστοιχα. Στην πρώτη περίπτωση αυτό επιτυγχάνεται με την αξιοποίηση του αθροίσματος της επανασταθμισμένης l1 νόρμας (reweighted l1 norm) και της επανασταθμισμένης πυρηνικής νόρμας (reweighted nuclear norm), οι οποίες ευθύνονται για το μη- κυρτό χαρακτήρα της προκύπτουσας συνάρτησης κόστους. Από τους δύο προτεινόμενους αλγορίθμους που ελαχιστοποιούν τη συνάρτηση αυτή, ο ένας ακολουθεί τη μέθοδο καθόδου σταδιακής εγγύτητας και ο άλλος βασίζεται στην πιο απαιτητική υπολογιστικά μέθοδο ADMM. Η δεύτερη συνάρτηση κόστους διαφοροποιείται σε σχέση με την πρώτη καθώς χρησιμοποιεί μια προσέγγιση παραγοντοποίησης για τη μοντελοποίηση του χαμηλού βαθμού του δομημένου πίνακα. Επιπλέον, λόγω της μη εκ των προτέρων γνώσης του πραγματικού βαθμού, ενσωματώνει έναν όρο επιβολής χαμηλού βαθμού, μέσω της μη- κυρτής έκφρασης που έχει προταθεί ως ένα άνω αυστηρό φράγμα της (κυρτής) πυρηνικής νόρμας (σ.σ. στο εξής θα αναφέρεται ως εναλλακτική μορφή της πυρηνικής νόρμας). Και στην περίπτωση αυτή, το πρόβλημα που προκύπτει είναι μη-κυρτό λόγω του φορμαλισμού του μέσω της παραγοντοποίησης πίνακα, ενώ η βελτιστοποίηση πραγματοποιείται εφαρμόζοντας μια υπολογιστικά αποδοτική μέθοδο καθόδου συνιστωσών ανά μπλοκ (block coordinate descent). Tο σύνολο των προτεινόμενων σχημάτων χρησιμοποιείται για τη μοντελοποίηση, με καινοτόμο τρόπο, του προβλήματος φασματικού διαχωρισμού υπερφασματικών εικόνων (ΥΦΕ). Όπως εξηγείται αναλυτικά, τόσο η αραιότητα όσο και ο χαμηλός βαθμός παρέχουν πολύτιμες ερμηνείες ορισμένων φυσικών χαρακτηριστικών των ΥΦΕ, όπως π.χ. η χωρική συσχέτιση. Πιο συγκεκριμένα, η αραιότητα και ο χαμηλός βαθμός μπορούν να υιοθετηθούν ως δομές στον πίνακα αφθονίας (abundance matrix - ο πίνακας που περιέχει τα ποσοστά παρουσίας των υλικών στην περιοχή που απεικονίζει κάθε εικονοστοιχείο). Τα σημαντικά πλεονεκτήματα που προσφέρουν οι προτεινόμενες τεχνικές, σε σχέση με ανταγωνιστικούς αλγορίθμους, αναδεικνύονται σε ένα πλήθος διαφορετικών πειραμάτων που πραγματοποιούνται τόσο σε συνθετικά όσο και σε αληθινά υπερφασματικά δεδομένα. Στο πλαίσιο της παραγοντοποίησης πίνακα χαμηλού βαθμού (low-rank matrix factorization) περιγράφονται στη διατριβή τέσσερις νέοι αλγόριθμοι, ο καθένας εκ των οποίων έχει σχεδιαστεί για μια διαφορετική έκφανση του συγκεκριμένου προβλήματος. Όλα τα προτεινόμενα σχήματα έχουν ένα κοινό χαρακτηριστικό: επιβάλλουν χαμηλό βαθμό στους πίνακες-παράγοντες καθώς και στο γινόμενό τους με την εισαγωγή ενός νέου όρου κανονικοποίησης. Ο όρος αυτός προκύπτει ως μια γενίκευση της εναλλακτικής έκφρασης της πυρηνικής νόρμας με τη μετατροπή της σε σταθμισμένη μορφή. Αξίζει να επισημανθεί πως με κατάλληλη επιλογή των πινάκων στάθμισης καταλήγουμε σε μια ειδική έκφραση της συγκεκριμένης νόρμας η οποία ανάγει την διαδικασία επιβολής χαμηλού βαθμού σε αυτή της από κοινού επιβολής αραιότητας στις στήλες των δύο πινάκων. Όπως αναδεικνύεται αναλυτικά, η ιδιότητα αυτή είναι πολύ χρήσιμη ιδιαιτέρως σε εφαρμογές διαχείρισης δεδομένων μεγάλης κλίμακας. Στα πλαίσια αυτά μελετώνται τρία πολύ σημαντικά προβλήματα στο πεδίο της μηχανικής μάθησης και συγκεκριμένα αυτά της αποθορυβοποίησης σήματος (denoising), πλήρωσης πίνακα (matrix completion) και παραγοντοποίησης μη-αρνητικού πίνακα (nonnegative matrix factorization). Χρησιμοποιώντας τη μέθοδο ελαχιστοποίησης άνω φραγμάτων συναρτήσεων διαδοχικών μπλοκ (block successive upper bound minimization) αναπτύσσονται τρεις νέοι επαναληπτικά σταθμισμένοι αλγόριθμοι τύπου Newton, οι οποίοι σχεδιάζονται κατάλληλα, λαμβάνοντας υπόψη τα ιδιαίτερα χαρακτηριστικά του εκάστοτε προβλήματος. Τέλος, παρουσιάζεται αλγόριθμος παραγοντοποίησης πίνακα ο οποίος έχει σχεδιαστεί πάνω στην προαναφερθείσα ιδέα επιβολής χαμηλού βαθμού, υποθέτοντας παράλληλα αραιότητα στον ένα πίνακα-παράγοντα. Η επαλήθευση της αποδοτικότητας όλων των αλγορίθμων που εισάγονται γίνεται με την εφαρμογή τους σε εκτεταμένα συνθετικά πειράματα, όπως επίσης και σε εφαρμογές πραγματικών δεδομένων μεγάλης κλίμακας π.χ. αποθορυβοποίηση ΥΦΕ, πλήρωση πινάκων από συστήματα συστάσεων (recommender systems) ταινιών, διαχωρισμός μουσικού σήματος και τέλος μη-επιβλεπόμενος φασματικός διαχωρισμός. Το τελευταίο πρόβλημα το οποίο διαπραγματεύεται η παρούσα διατριβή είναι αυτό της ακολουθιακής εκμάθησης υποχώρου χαμηλού βαθμού και της πλήρωσης πίνακα. Το πρόβλημα αυτό εδράζεται σε ένα διαφορετικό πλαίσιο μάθησης, την επονομαζόμενη ακολουθιακή μάθηση, η οποία αποτελεί μια πολύτιμη προσέγγιση σε εφαρμογές δεδομένων μεγάλης κλίμακας, αλλά και σε εφαρμογές που λαμβάνουν χώρα σε χρονικά μεταβαλλόμενα περιβάλλοντα. Στην παρούσα διατριβή προτείνονται δύο διαφορετικοί αλγόριθμοι, ένας μπεϋζιανός και ένας ντετερμινιστικός. Ο πρώτος αλγόριθμος προκύπτει από την εφαρμογή μιας καινοτόμου ακολουθιακής μεθόδου συμπερασμού βασισμένου σε μεταβολές. Αυτή η μέθοδος χρησιμοποιείται για την πραγματοποίηση προσεγγιστικού συμπερασμού στο προτεινόμενο ιεραρχικό μπεϋζιανό μοντέλο. Αξίζει να σημειωθεί πως το μοντέλο αυτό έχει σχεδιαστεί με κατάλληλο τρόπο έτσι ώστε να ενσωματώνει, σε πιθανοτικό πλαίσιο, την ίδια ιδέα επιβολής χαμηλού βαθμού που προτείνεται για το πρόβλημα παραγοντοποίησης πίνακα χαμηλού βαθμού, δηλαδή επιβάλλοντας από-κοινού αραιότητα στους πίνακες-παράγοντες. Ωστόσο, ακολουθώντας την πιθανοτική προσέγγιση, αυτό πραγματοποιείται επιβάλλοντας πολύ-επίπεδες a priori κατανομές Laplace στις στήλες τους. Ο αλγόριθμος που προκύπτει είναι πλήρως αυτοματοποιημένος, μιας και δεν απαιτεί τη ρύθμιση κάποιας παραμέτρου κανονικοποίησης. Ο δεύτερος αλγόριθμος προκύπτει από την ελαχιστοποίηση μιας κατάλληλα διαμορφωμένης συνάρτησης κόστους. Και στην περίπτωση αυτή, χρησιμοποιείται η προαναφερθείσα ιδέα επιβολής χαμηλού βαθμού (κατάλληλα τροποποιημένη έτσι ώστε να μπορεί να εφαρμοστεί στο ακολουθιακό πλαίσιο μάθησης). Ενδιαφέρον παρουσιάζει το γεγονός πως ο τελευταίος αλγόριθμος μπορεί να θεωρηθεί ως μια ντετερμινιστική εκδοχή του προαναφερθέντος πιθανοτικού αλγορίθμου. Τέλος, σημαντικό χαρακτηριστικό και των δύο αλγορίθμων είναι ότι δεν είναι απαραίτητη η εκ των προτέρων γνώση του βαθμού του πίνακα υποχώρου. Τα πλεονεκτήματα των προτεινόμενων προσεγγίσεων παρουσιάζονται σε ένα μεγάλο εύρος πειραμάτων που πραγματοποιήθηκαν σε συνθετικά δεδομένα, στο πρόβλημα της ακολουθιακής πλήρωσης ΥΦΕ και στην εκμάθηση ιδιο-προσώπων κάνοντας χρήση πραγματικών δεδομένων.Structured matrix estimation belongs to the family of learning tasks whose main goal is to reveal low-dimensional embeddings of high-dimensional data. Nowadays, this task appears in various forms in a plethora of signal processing and machine learning applications. In the present thesis, novel mathematical formulations for three different instances of structured matrix estimation are proposed. Concretely, the problems of a) simultaneously sparse, low-rank and nonnegative matrix estimation, b) low-rank matrix factorization and c) online low-rank subspace learning and matrix completion, are addressed and analyzed. In all cases, it is assumed that data are generated by a linear process, i.e., we deal with linear measurements. A suite of novel and efficient {\it optimization algorithms} amenable to handling {\it large-scale data} are presented. A key common feature of all the introduced schemes is {\it nonconvexity}. It should be noted that albeit nonconvexity complicates the derivation of theoretical guarantees (contrary to convex relevant approaches, which - in most cases - can be theoretically analyzed relatively easily), significant gains in terms of the estimation performance of the emerging algorithms have been recently witnessed in several real practical situations. Let us first focus on simultaneously sparse, low-rank and nonnegative matrix estimation from linear measurements. In the thesis this problem is resolved by three different optimization algorithms, which address two different and novel formulations of the relevant task. All the proposed schemes are suitably devised for minimizing a cost function consisting of a least-squares data fitting term and two regularization terms. The latter are utilized for promoting sparsity and low-rankness. The novelty of the first formulation lies in the use, for the first time in the literature, of the sum of the reweighted 1\ell_1 and the reweighted nuclear norms. The merits of reweighted 1\ell_1 and nuclear norms have been exposed in numerous sparse and low-rank matrix recovery problems. As is known, albeit these two norms induce nonconvexity in the resulting optimization problems, they provide a better approximation of the 0\ell_0 norm and the rank function, respectively, as compared to relevant convex regularizers. Herein, we aspire to benefit from the use of the combination of these two norms. The first algorithm is an incremental proximal minimization scheme, while the second one is an ADMM solver. The third algorithm's main goal is to further reduce the computational complexity. Towards this end, it deviates from the other two in the use of a matrix factorization based approach for modelling low-rankness. Since the rank of the sought matrix is generally unknown, a low-rank imposing term, i.e., the variational form of the nuclear norm, which is a function of the matrix factors, is utilized. In this case, the optimization process takes place via a block coordinate descent type scheme. The proposed formulations are utilized for modelling in a pioneering way a very important problem in hyperspectral image processing, that of hyperspectral image unmixing. It is shown that both sparsity and low-rank offer meaningful interpretations of inherent natural characteristics of hyperspectral images. More specifically, both sparsity and low-rankness are reasonable hypotheses that can be made for the so-called {\it abundance} matrix, i.e., the nonnegative matrix containing the fractions of presence of the different materials, called {\it endmembers}, at the region depicted by each pixel. The merits of the proposed algorithms over other state-of-the-art hyperspectral unmixing algorithms are corroborated in a wealth of simulated and real hyperspectral imaging data experiments. In the framework of low-rank matrix factorization (LRMF) four novel optimization algorithms are presented, each modelling a different instance of it. All the proposed schemes share a common thread: they impose low-rank on both matrix factors and the sought matrix by a newly introduced regularization term. This term can be considered as a generalized weighted version of the variational form of the nuclear norm. Notably, by appropriately selecting the weight matrix, low-rank enforcement amounts to imposing joint column sparsity on both matrix factors. This property is actually proven to be quite important in applications dealing with large-scale data, since it leads to a significant decrease of the induced computational complexity. Along these lines, three well-known machine learning tasks, namely, denoising, matrix completion and low-rank nonnegative matrix factorization (NMF), are redefined according to the new low-rank regularization approach. Then, following the block successive upper bound minimization framework, alternating iteratively reweighted least-squares, Newton-type algorithms are devised accounting for the particular characteristics of the problem that each time is addressed. Lastly, an additional low-rank and sparse NMF algorithm is proposed, which hinges upon the same low-rank promoting idea mentioned above, while also accounting for sparsity on one of the matrix factors. All the derived algorithms are tested on extensive simulated data experiments and real large-scale data applications such as hyperspectral image denoising, matrix completion for recommender systems, music signal decomposition and unsupervised hyperspectral image unmixing with unknown number of endmembers. The last problem that this thesis touches upon is online low-rank subspace learning and matrix completion. This task follows a different learning model, i.e., online learning, which offers a valuable processing framework when one deals with large-scale streaming data possibly under time-varying conditions. In the thesis, two different online algorithms are put forth. The first one stems from a newly developed online variational Bayes scheme. This is applied for performing approximate inference based on a carefully designed novel multi-hierarchical Bayesian model. Notably, the adopted model encompasses similar low-rank promoting ideas to those mentioned for LRMF. That is, low-rank is imposed via promoting jointly column sparsity on the columns of the matrix factors. However, following the Bayesian rationale, this now takes place by assigning Laplace-type marginal priors on the matrix factors. Going one step further, additional sparsity is independently modelled on the subspace matrix thus imposing multiple structures on the same matrix. The resulting algorithm is fully automated, i.e., it does not demand fine-tuning of any parameters. The second algorithm follows a cost function minimization based strategy. Again, the same low-rank promoting idea introduced for LRMF is incorporated in this problem via the use of a - modified to the online processing scenario - low-rank regularization term. Interestingly, the resulting optimization scheme can be considered as the deterministic analogue of the Bayesian one. Both the proposed algorithms present a favorable feature, i.e., they are competent to learn subspaces without requiring the a priori knowledge of their true rank. Their effectiveness is showcased in extensive simulated data experiments and in online hyperspectral image completion and eigenface learning using real data

    Unsupervised training of deep learning based image denoisers from undersampled measurements

    Get PDF
    Department of Electrical EngineeringCompressive sensing is a method to recover the original image from undersampled measurements. In order to overcome the ill-posedness of this inverse problem, image priors are used such as sparsity, minimal total-variation, or self-similarity of images. Recently, deep learning based compressive image recovery methods have been proposed and have yielded state-of-the-art performances. They used data-driven approaches instead of hand-crafted image priors to regularize ill-posed inverse problems with undersampled data. Ironically, training deep neural networks (DNNs) for them requires ???clean??? ground truth images, but obtaining the best quality images from undersampled data requires well-trained DNNs. To resolve this dilemma, we propose novel methods based on two well-grounded theories: denoiser-approximate message passing (D-AMP) and Stein???s unbiased risk estimator (SURE). Our proposed methods, LDAMP SURE and LDAMP SURE-T, were able to train deep learning based image denoisers from undersampled measurements without ground truth images and without additional image priors and to recover images with state-of-the-art qualities from undersampled data. We evaluated our methods for various compressive sensing recovery problems with Gaussian random, coded diffraction pattern, and compressive sensing MRI (CS-MRI) measurement matrices. Our proposed methods yielded state-of-the-art performances for all cases without ground truth images. Our methods also yielded comparable performances to the approaches with ground truth data. Moreover, we have extended our methods to deal with a Gaussian noise in a measurement domain and further enhance reconstruction quality by developing an image refining method called LDAMP SURE-FT.clos

    Complex Sparse Signal Recovery with Adaptive Laplace Priors

    Full text link
    Because of its self-regularizing nature and uncertainty estimation, the Bayesian approach has achieved excellent recovery performance across a wide range of sparse signal recovery applications. However, most methods are based on the real-value signal model, with the complex-value signal model rarely considered. Typically, the complex signal model is adopted so that phase information can be utilized. Therefore, it is non-trivial to develop Bayesian models for the complex-value signal model. Motivated by the adaptive least absolute shrinkage and selection operator (LASSO) and the sparse Bayesian learning (SBL) framework, a hierarchical model with adaptive Laplace priors is proposed for applications of complex sparse signal recovery in this paper. The proposed hierarchical Bayesian framework is easy to extend for the case of multiple measurement vectors. Moreover, the space alternating principle is integrated into the algorithm to avoid using the matrix inverse operation. In the experimental section of this work, the proposed algorithm is concerned with both complex Gaussian random dictionaries and directions of arrival (DOA) estimations. The experimental results show that the proposed algorithm offers better sparsity recovery performance than the state-of-the-art methods for different types of complex signals
    corecore