291 research outputs found

    Rewards-Driven Control of Robot Arm by Decoding EEG Signals

    Get PDF
    Decoding the user intention from non-invasive EEG signals is a challenging problem. In this paper, we study the feasibility of predicting the goal for controlling the robot arm in self-paced reaching movements, i.e., spontaneous movements that do not require an external cue. Our proposed system continuously estimates the goal throughout a trial starting before the movement onset by online classification and generates optimal trajectories for driving the robot arm to the estimated goal. Experiments using EEG signals of one healthy subject (right arm) yield smooth reaching movements of the simulated 7 degrees of freedom KUKA robot arm in planar center-out reaching task with approximately 80 % accuracy of reaching the actual goal

    Generative Models for Learning Robot Manipulation Skills from Humans

    Get PDF
    A long standing goal in artificial intelligence is to make robots seamlessly interact with humans in performing everyday manipulation skills. Learning from demonstrations or imitation learning provides a promising route to bridge this gap. In contrast to direct trajectory learning from demonstrations, many problems arise in interactive robotic applications that require higher contextual level understanding of the environment. This requires learning invariant mappings in the demonstrations that can generalize across different environmental situations such as size, position, orientation of objects, viewpoint of the observer, etc. In this thesis, we address this challenge by encapsulating invariant patterns in the demonstrations using probabilistic learning models for acquiring dexterous manipulation skills. We learn the joint probability density function of the demonstrations with a hidden semi-Markov model, and smoothly follow the generated sequence of states with a linear quadratic tracking controller. The model exploits the invariant segments (also termed as sub-goals, options or actions) in the demonstrations and adapts the movement in accordance with the external environmental situations such as size, position and orientation of the objects in the environment using a task-parameterized formulation. We incorporate high-dimensional sensory data for skill acquisition by parsimoniously representing the demonstrations using statistical subspace clustering methods and exploit the coordination patterns in latent space. To adapt the models on the fly and/or teach new manipulation skills online with the streaming data, we formulate a non-parametric scalable online sequence clustering algorithm with Bayesian non-parametric mixture models to avoid the model selection problem while ensuring tractability under small variance asymptotics. We exploit the developed generative models to perform manipulation skills with remotely operated vehicles over satellite communication in the presence of communication delays and limited bandwidth. A set of task-parameterized generative models are learned from the demonstrations of different manipulation skills provided by the teleoperator. The model captures the intention of teleoperator on one hand and provides assistance in performing remote manipulation tasks on the other hand under varying environmental situations. The assistance is formulated under time-independent shared control, where the model continuously corrects the remote arm movement based on the current state of the teleoperator; and/or time-dependent autonomous control, where the model synthesizes the movement of the remote arm for autonomous skill execution. Using the proposed methodology with the two-armed Baxter robot as a mock-up for semi-autonomous teleoperation, we are able to learn manipulation skills such as opening a valve, pick-and-place an object by obstacle avoidance, hot-stabbing (a specialized underwater task akin to peg-in-a-hole task), screw-driver target snapping, and tracking a carabiner in as few as 4 - 8 demonstrations. Our study shows that the proposed manipulation assistance formulations improve the performance of the teleoperator by reducing the task errors and the execution time, while catering for the environmental differences in performing remote manipulation tasks with limited bandwidth and communication delays

    Robot Learning and Control Using Error-Related Cognitive Brain Signals

    Get PDF
    Durante los últimos años, el campo de los interfaces cerebro-máquina (BMIs en inglés) ha demostrado cómo humanos y animales son capaces de controlar dispositivos neuroprotésicos directamente de la modulación voluntaria de sus señales cerebrales, tanto en aproximaciones invasivas como no invasivas. Todos estos BMIs comparten un paradigma común, donde el usuario trasmite información relacionada con el control de la neuroprótesis. Esta información se recoge de la actividad cerebral del usuario, para luego ser traducida en comandos de control para el dispositivo. Cuando el dispositivo recibe y ejecuta la orden, el usuario recibe una retroalimentación del rendimiento del sistema, cerrando de esta manera el bucle entre usuario y dispositivo. La mayoría de los BMIs decodifican parámetros de control de áreas corticales para generar la secuencia de movimientos para la neuroprótesis. Esta aproximación simula al control motor típico, dado que enlaza la actividad neural con el comportamiento o la ejecución motora. La ejecución motora, sin embargo, es el resultado de la actividad combinada del córtex cerebral, áreas subcorticales y la médula espinal. De hecho, numerosos movimientos complejos, desde la manipulación a andar, se tratan principalmente al nivel de la médula espinal, mientras que las áreas corticales simplemente proveen el punto del espacio a alcanzar y el momento de inicio del movimiento. Esta tesis propone un paradigma BMI alternativo que trata de emular el rol de los niveles subcorticales durante el control motor. El paradigma se basa en señales cerebrales que transportan información cognitiva asociada con procesos de toma de decisiones en movimientos orientados a un objetivo, y cuya implementación de bajo nivel se maneja en niveles subcorticales. A lo largo de la tesis, se presenta el primer paso hacia el desarrollo de este paradigma centrándose en una señal cognitiva específica relacionada con el procesamiento de errores humano: los potenciales de error (ErrPs) medibles mediante electroencefalograma (EEG). En esta propuesta de paradigma, la neuroprótesis ejecuta activamente una tarea de alcance mientras el usuario simplemente monitoriza el rendimiento del dispositivo mediante la evaluación de la calidad de las acciones ejecutadas por el dispositivo. Estas evaluaciones se traducen (gracias a los ErrPs) en retroalimentación para el dispositivo, el cual las usa en un contexto de aprendizaje por refuerzo para mejorar su comportamiento. Esta tesis demuestra por primera vez este paradigma BMI de enseñanza con doce sujetos en tres experimentos en bucle cerrado concluyendo con la operación de un manipulador robótico real. Como la mayoría de BMIs, el paradigma propuesto requiere una etapa de calibración específica para cada sujeto y tarea. Esta fase, un proceso que requiere mucho tiempo y extenuante para el usuario, dificulta la distribución de los BMIs a aplicaciones fuera del laboratorio. En el caso particular del paradigma propuesto, una fase de calibración para cada tarea es altamente impráctico ya que el tiempo necesario para esta fase se suma al tiempo de aprendizaje de la tarea, retrasando sustancialmente el control final del dispositivo. Así, sería conveniente poder entrenar clasificadores capaces de funcionar independientemente de la tarea de aprendizaje que se esté ejecutando. Esta tesis analiza desde un punto de vista electrofisiológico cómo los potenciales se ven afectados por diferentes tareas ejecutadas por el dispositivo, mostrando cambios principalmente en la latencia la señal; y estudia cómo transferir el clasificador entre tareas de dos maneras: primero, aplicando clasificadores adaptativos del estado del arte, y segundo corrigiendo la latencia entre las señales de dos tareas para poder generalizar entre ambas. Otro reto importante bajo este paradigma viene del tiempo necesario para aprender la tarea. Debido al bajo ratio de información transferida por minuto del BMI, el sistema tiene una pobre escalabilidad: el tiempo de aprendizaje crece exponencialmente con el tamaño del espacio de aprendizaje, y por tanto resulta impráctico obtener el comportamiento motor óptimo mediante aprendizaje por refuerzo. Sin embargo, este problema puede resolverse explotando la estructura de la tarea de aprendizaje. Por ejemplo, si el número de posiciones a alcanzar es discreto se puede pre-calcular la política óptima para cada posible posición. En esta tesis, se muestra cómo se puede usar la estructura de la tarea dentro del paradigma propuesto para reducir enormemente el tiempo de aprendizaje de la tarea (de diez minutos a apenas medio minuto), mejorando enormemente así la escalabilidad del sistema. Finalmente, esta tesis muestra cómo, gracias a las lecciones aprendidas en los descubrimientos anteriores, es posible eliminar completamente la etapa de calibración del paradigma propuesto mediante el aprendizaje no supervisado del clasificador al mismo tiempo que se está ejecutando la tarea. La idea fundamental es calcular un conjunto de clasificadores que sigan las restricciones de la tarea anteriormente usadas, para a continuación seleccionar el mejor clasificador del conjunto. De esta manera, esta tesis presenta un BMI plug-and-play que sigue el paradigma propuesto, aprende la tarea y el clasificador y finalmente alcanza la posición del espacio deseada por el usuario

    Future developments in brain-machine interface research

    Get PDF
    Neuroprosthetic devices based on brain-machine interface technology hold promise for the restoration of body mobility in patients suffering from devastating motor deficits caused by brain injury, neurologic diseases and limb loss. During the last decade, considerable progress has been achieved in this multidisciplinary research, mainly in the brain-machine interface that enacts upper-limb functionality. However, a considerable number of problems need to be resolved before fully functional limb neuroprostheses can be built. To move towards developing neuroprosthetic devices for humans, brain-machine interface research has to address a number of issues related to improving the quality of neuronal recordings, achieving stable, long-term performance, and extending the brain-machine interface approach to a broad range of motor and sensory functions. Here, we review the future steps that are part of the strategic plan of the Duke University Center for Neuroengineering, and its partners, the Brazilian National Institute of Brain-Machine Interfaces and the École Polytechnique Fédérale de Lausanne (EPFL) Center for Neuroprosthetics, to bring this new technology to clinical fruition

    Customizing skills for assistive robotic manipulators, an inverse reinforcement learning approach with error-related potentials

    Get PDF
    Robotic assistance via motorized robotic arm manipulators can be of valuable assistance to individuals with upper-limb motor disabilities. Brain-computer interfaces (BCI) offer an intuitive means to control such assistive robotic manipulators. However, BCI performance may vary due to the non-stationary nature of the electroencephalogram (EEG) signals. It, hence, cannot be used safely for controlling tasks where errors may be detrimental to the user. Avoiding obstacles is one such task. As there exist many techniques to avoid obstacles in robotics, we propose to give the control to the robot to avoid obstacles and to leave to the user the choice of the robot behavior to do so a matter of personal preference as some users may be more daring while others more careful. We enable the users to train the robot controller to adapt its way to approach obstacles relying on BCI that detects error-related potentials (ErrP), indicative of the user’s error expectation of the robot’s current strategy to meet their preferences. Gaussian process-based inverse reinforcement learning, in combination with the ErrP-BCI, infers the user’s preference and updates the obstacle avoidance controller so as to generate personalized robot trajectories. We validate the approach in experiments with thirteen able-bodied subjects using a robotic arm that picks up, places and avoids real-life objects. Results show that the algorithm can learn user’s preference and adapt the robot behavior rapidly using less than five demonstrations not necessarily optimal

    The potential of error-related potentials. Analysis and decoding for control, neuro-rehabilitation and motor substitution

    Get PDF
    Las interfaces cerebro-máquina (BMIs, por sus siglas en inglés) permiten la decodificación de patrones de activación neuronal del cerebro de los usuarios para proporcionar a personas con movilidad severamente limitada, ya sea debido a un accidente o a una enfermedad neurodegenerativa, una forma de establecer una conexión directa entre su cerebro y un dispositivo. En este sentido, las BMIs basadas en técnicas no invasivas, como el electroencefalograma (EEG) han ofrecido a estos usuarios nuevas oportunidades para recuperar el control sobre las actividades de su vida diaria que de otro modo no podrían realizar, especialmente en las áreas de comunicación y control de su entorno.En los últimos años, la tecnología está avanzando a grandes pasos y con ella la complejidad de dispositivos ha incrementado significativamente, ampliando el número de posibilidades para controlar sofisticados dispositivos robóticos, prótesis con numerosos grados de libertad o incluso para la aplicación de complejos patrones de estimulación eléctrica en las propias extremidades paralizadas de un usuario, que le permitan ejecutar movimientos precisos. Sin embargo, la cantidad de información que se puede transmitir entre el cerebro y estos dispositivos sigue siendo muy limitada, tanto por el número como por la velocidad a la que se pueden decodificar los comandos neuronales. Por lo tanto, depender únicamente de las señales neuronales no garantiza un control óptimo y preciso.Para poder sacar el máximo partido de estas tecnologías, el campo de las BMIs adoptó el conocido enfoque de “control-compartido". Esta estrategia de control pretende crear un sistema de cooperación entre el usuario y un dispositivo inteligente, liberando al usuario de las tareas más pesadas requeridas para ejecutar la tarea sin llegar a perder la sensación de estar en control. De esta manera, los usuarios solo necesitan centrar su atención en los comandos de alto nivel (por ejemplo, elegir un elemento específico que agarrar, o elegir el destino final donde moverse) mientras el agente inteligente resuelve problemas de bajo nivel (como planificación de trayectorias, esquivar obstáculos, etc.) que permitan realizar la tarea designada de la manera óptima.En particular, esta tesis gira en torno a una señal neuronal cognitiva de alto nivel originada como la falta de coincidencia entre las expectativas del usuario y las acciones reales ejecutadas por los dispositivos inteligentes. Estas señales, denominadas potenciales de error (ErrPs), se consideran una forma natural de intercomunicar nuestro cerebro con máquinas y, por lo tanto, los usuarios solo requieren monitorizar las acciones de un dispositivo y evaluar mentalmente si este último se comporta correctamente o no. Esto puede verse como una forma de supervisar el comportamiento del dispositivo, en el que la decodificación de estas evaluaciones mentales se utiliza para proporcionar a estos dispositivos retroalimentación directamente relacionada con la ejecución de una tarea determinada para que puedan aprender y adaptarse a las preferencias del usuario.Dado que la respuesta neuronal de ErrP está asociada a un evento exógeno (dispositivo que comete una acción errónea), la mayoría de los trabajos desarrollados han intentado distinguir si una acción es correcta o errónea mediante la explotación de eventos discretos en escenarios bien controlados. Esta tesis presenta el primer intento de cambiar hacia configuraciones asíncronas que se centran en tareas relacionadas con el aumento de las capacidades motoras, con el objetivo de desarrollar interfaces para usuarios con movilidad limitada. En este tipo de configuraciones, dos desafíos importantes son que los eventos correctos o erróneos no están claramente definidos y los usuarios tienen que evaluar continuamente la tarea ejecutada, mientras que la clasificación de las señales EEG debe realizarse de forma asíncrona. Como resultado, los decodificadores tienen que lidiar constantemente con la actividad EEG de fondo, que típicamente conduce a una gran cantidad de errores de detección de firmas de error. Para superar estos desafíos, esta tesis aborda dos líneas principales de trabajo.Primero, explora la neurofisiología de las señales neuronales evocadas asociadas con la percepción de errores durante el uso interactivo de un BMI en escenarios continuos y más realistas.Se realizaron dos estudios para encontrar características alternativas basadas en el dominio de la frecuencia como una forma de lidiar con la alta variabilidad de las señales del EEG. Resultados, revelaron que existe un patrón estable representado como oscilaciones "theta" que mejoran la generalización durante la clasificación. Además, se utilizaron técnicas de aprendizaje automático de última generación para aplicar el aprendizaje de transferencia para discriminar asincrónicamente los errores cuando se introdujeron de forma gradual y no se conoce presumiblemente el inicio que desencadena los ErrPs. Además, los análisis de neurofisiología arrojan algo de luz sobre los mecanismos cognitivos subyacentes que provocan ErrP durante las tareas continuas, lo que sugiere la existencia de modelos neuronales en nuestro cerebro que acumulan evidencia y solo toman una decisión al alcanzar un cierto umbral. En segundo lugar, esta tesis evalúa la implementación de estos potenciales relacionados con errores en tres aplicaciones orientadas al usuario. Estos estudios no solo exploran cómo maximizar el rendimiento de decodificación de las firmas ErrP, sino que también investigan los mecanismos neuronales subyacentes y cómo los diferentes factores afectan las señales provocadas.La primera aplicación de esta tesis presenta una nueva forma de guiar a un robot móvil que se mueve en un entorno continuo utilizando solo potenciales de error como retroalimentación que podrían usarse para el control directo de dispositivos de asistencia. Con este propósito, proponemos un algoritmo basado en el emparejamiento de políticas para el aprendizaje de refuerzo inverso para inferir el objetivo del usuario a partir de señales cerebrales.La segunda aplicación presentada en esta tesis contempla los primeros pasos hacia un BCI híbrido para ejecutar distintos tipos de agarre de objetos, con el objetivo de ayudar a las personas que han perdido la funcionalidad motora de su extremidad superior. Este BMI combina la decodificación del tipo de agarre a partir de señales de EEG obtenidas del espectro de baja frecuencia con los potenciales de error provocados como resultado de la monitorización de movimientos de agarre erróneos. Los resultados muestran que, en efecto los ErrP aparecen en combinaciones de señales motoras originadas a partir de movimientos de agarre consistentes en una única repetición. Además, la evaluación de los diferentes factores involucrados en el diseño de la interfaz híbrida (como la velocidad de los estímulos, el tipo de agarre o la tarea mental) muestra cómo dichos factores afectan la morfología del subsiguiente potencial de error evocado.La tercera aplicación investiga los correlatos neuronales y los procesos cognitivos subyacentes asociados con desajustes somatosensoriales producidos por perturbaciones inesperadas durante la estimulación eléctrica neuromuscular en el brazo de un usuario. Este estudio simula los posibles errores que ocurren durante la terapia de neuro-rehabilitación, en la que la activación simultánea de la estimulación aferente mientras los sujetos se concentran en la realización de una tarea motora es crucial para una recuperación óptima. Los resultados muestran que los errores pueden aumentar la atención del sujeto en la tarea y desencadenar mecanismos de aprendizaje que al mismo tiempo podrían promover la neuroplasticidad motora.En resumen, a lo largo de esta tesis, se han diseñado varios paradigmas experimentales para mejorar la comprensión de cómo se generan los potenciales relacionados con errores durante el uso interactivo de BMI en aplicaciones orientadas al usuario. Se han propuesto diferentes métodos para pasar de la configuración bloqueada en el tiempo a la asíncrona, tanto en términos de decodificación como de percepción de los eventos erróneos; y ha explorado tres aplicaciones relacionadas con el aumento de las capacidades motoras, en las cuales los ErrPs se pueden usar para el control de dispositivos, la sustitución de motores y la neuro-rehabilitación.Brain-machine interfaces (BMIs) allow the decoding of cortical activation patterns from the users brain to provide people with severely limited mobility, due to an accident or disease, a way to establish a direct connection between their brain and a device. In this sense, BMIs based in noninvasive recordings, such as the electroencephalogram (EEG) have o↵ered these users new opportunities to regain control over activities of their daily life that they could not perform otherwise, especially in the areas of communication and control of their environment. Over the past years and with the latest technological advancements, devices have significantly grown on complexity expanding the number of possibilities to control complex robotic devices, prosthesis with numerous degrees of freedom or even to apply compound patterns of electrical stimulation on the subjects own paralyzed extremities to execute precise movements. However, the band-with of communication between brain and devices is still very limited, both in terms of the number and the speed at which neural commands can be decoded, and thus solely relying on neural signals do not guarantee accurate control them. In order to benefit of these technologies, the field of BMIs adopted the well-known approach of shared-control. This strategy intends to create a cooperation system between the user and an intelligent device, liberating the user from the burdensome parts of the task without losing the feeling of being in control. Here, users only need to focus their attention on high-level commands (e.g. choose the final destination to reach, or a specific item to grab) while the intelligent agent resolve low-level problems (e.g. trajectory planning, obstacle avoidance, etc) to perform the designated task in the optimal way. In particular, this thesis revolves around a high-level cognitive neural signal originated as the mismatch between the expectations of the user and the actual actions executed by the intelligent devices. These signals, denoted as error-related potentials (ErrPs), are thought as a natural way to intercommunicate our brain with machines and thus users only require to monitor the actions of a device and mentally assess whether the latter is behaving correctly or not. This can be seen as a way to supervise the device’s behavior, in which the decoding of these mental assessments is used to provide these devices with feedback directly related with the performance of a given task so they can learn and adapt to the user’s preferences. Since the ErrP’s neural response is associated to an exogenous event (device committing an erroneous action), most of the developed works have attempted to distinguish whether an action is correct or erroneous by exploiting discrete events under well-controlled scenarios. This thesis presents the first attempt to shift towards asynchronous settings that focus on tasks related with the augmentation of motor capabilities, with the objective of developing interfaces for users with limited mobility. In this type of setups, two important challenges are that correct or erroneous events are not clearly defined and users have to continuously evaluate the executed task, while classification of EEG signals has to be performed asynchronously. As a result, the decoders have to constantly deal with background EEG activity, which typically leads to a large number of missdetection of error signatures. To overcome these challenges, this thesis addresses two main lines of work. First, it explores the neurophysiology of the evoked neural signatures associated with the perception of errors during the interactive use of a BMI in continuous and more realistic scenarios. Two studies were performed to find alternative features based on the frequency domain as a way of dealing with the high variability of EEG signals. Results, revealed that there exists a stable pattern represented as theta oscillations that enhance generalization during classification. Also, state-of-the-art machine learning techniques were used to apply transfer learning to asynchronously discriminate errors when they were introduced in a gradual fashion and the onset that triggers the ErrPs is not presumably known. Furthermore, neurophsysiology analyses shed some light about the underlying cognitive mechanisms that elicit ErrP during continuous tasks, suggesting the existence of neural models in our brain that accumulate evidence and only take a decision upon reaching a certain threshold. Secondly, this thesis evaluates the implementation of these error-related potentials in three user-oriented applications. These studies not only explore how to maximize the decoding performance of ErrP signatures but also investigate the underlying neural mechanisms and how di↵erent factors a↵ect the elicited signals. The first application of this thesis presents a new way to guide a mobile robot moving in a continuous environment using only error potentials as feedback which could be used for the direct control of assistive devices. With this purpose, we propose an algorithm based on policy matching for inverse reinforcement learning to infer the user goal from brain signals. The second application presented in this thesis contemplates the first steps towards a hybrid BMI for grasping oriented to assist people who have lost motor functionality of their upper-limb. This BMI combines the decoding of the type of grasp from low-frequency EEG signals with error-related potentials elicited as the result of monitoring an erroneous grasping. The results show that ErrPs are elicited in combination of motor signatures from the low-frequency spectrum originated from single repetition grasping tasks and evaluates how di↵erent design factors (such as the speed of the stimuli, type of grasp or mental task) impact the morphology of the subsequent evoked ErrP. The third application investigates the neural correlates and the underlying cognitive processes associated with somatosensory mismatches produced by unexpected disturbances during neuromsucular electrical stimulation on a user’s arm. This study simulates possible errors that occur during neurorehabilitation therapy, in which the simultaneous activation of a↵erent stimulation while the subjects are concentrated in performing a motor task is crucial for optimal recovery. The results showed that errors may increase subject’s attention on the task and trigger learning mechanisms that at the same time could promote motor neuroplasticity. In summary, throughout this thesis, several experimental paradigms have been designed to improve the understanding of how error-related potentials are generated during the interactive use of BMIs in user-oriented applications. Di↵erent methods have been proposed to shift from time-locked to asynchronous settings, both in terms of decoding and perception of the erroneous events; and it has explored three applications related with the augmentation of motor capabilities, in which ErrPs can be used for control of devices, motor substitution and neurorehabilitation.<br /

    Enhancing Nervous System Recovery through Neurobiologics, Neural Interface Training, and Neurorehabilitation.

    Get PDF
    After an initial period of recovery, human neurological injury has long been thought to be static. In order to improve quality of life for those suffering from stroke, spinal cord injury, or traumatic brain injury, researchers have been working to restore the nervous system and reduce neurological deficits through a number of mechanisms. For example, neurobiologists have been identifying and manipulating components of the intra- and extracellular milieu to alter the regenerative potential of neurons, neuro-engineers have been producing brain-machine and neural interfaces that circumvent lesions to restore functionality, and neurorehabilitation experts have been developing new ways to revitalize the nervous system even in chronic disease. While each of these areas holds promise, their individual paths to clinical relevance remain difficult. Nonetheless, these methods are now able to synergistically enhance recovery of native motor function to levels which were previously believed to be impossible. Furthermore, such recovery can even persist after training, and for the first time there is evidence of functional axonal regrowth and rewiring in the central nervous system of animal models. To attain this type of regeneration, rehabilitation paradigms that pair cortically-based intent with activation of affected circuits and positive neurofeedback appear to be required-a phenomenon which raises new and far reaching questions about the underlying relationship between conscious action and neural repair. For this reason, we argue that multi-modal therapy will be necessary to facilitate a truly robust recovery, and that the success of investigational microscopic techniques may depend on their integration into macroscopic frameworks that include task-based neurorehabilitation. We further identify critical components of future neural repair strategies and explore the most updated knowledge, progress, and challenges in the fields of cellular neuronal repair, neural interfacing, and neurorehabilitation, all with the goal of better understanding neurological injury and how to improve recovery
    corecore