924 research outputs found

    Augmented reality and scene examination

    Get PDF
    The research presented in this thesis explores the impact of Augmented Reality on human performance, and compares this technology with Virtual Reality using a head-mounted video-feed for a variety of tasks that relate to scene examination. The motivation for the work was the question of whether Augmented Reality could provide a vehicle for training in crime scene investigation. The Augmented Reality application was developed using fiducial markers in the Windows Presentation Foundation, running on a wearable computer platform; Virtual Reality was developed using the Crytek game engine to present a photo-realistic 3D environment; and a video-feed was provided through head-mounted webcam. All media were presented through head-mounted displays of similar resolution to provide the sole source of visual information to participants in the experiments. The experiments were designed to increase the amount of mobility required to conduct the search task, i.e., from rotation in the horizontal or vertical plane through to movement around a room. In each experiment, participants were required to find objects and subsequently recall their location. It is concluded that human performance is affected not merely via the medium through which the world is perceived but moreover, the constraints governing how movement in the world is controlled

    Intelligent tutoring in virtual reality for highly dynamic pedestrian safety training

    Get PDF
    This thesis presents the design, implementation, and evaluation of an Intelligent Tutoring System (ITS) with a Virtual Reality (VR) interface for child pedestrian safety training. This system enables children to train practical skills in a safe and realistic virtual environment without the time and space dependencies of traditional roadside training. This system also employs Domain and Student Modelling techniques to analyze user data during training automatically and to provide appropriate instructions and feedback. Thus, the traditional requirement of constant monitoring from teaching personnel is greatly reduced. Compared to previous work, especially the second aspect is a principal novelty for this domain. To achieve this, a novel Domain and Student Modeling method was developed in addition to a modular and extensible virtual environment for the target domain. While the Domain and Student Modeling framework is designed to handle the highly dynamic nature of training in traffic and the ill-defined characteristics of pedestrian tasks, the modular virtual environment supports different interaction methods and a simple and efficient way to create and adapt exercises. The thesis is complemented by two user studies with elementary school children. These studies testify great overall user acceptance and the system’s potential for improving key pedestrian skills through autonomous learning. Last but not least, the thesis presents experiments with different forms of VR input and provides directions for future work.Diese Arbeit behandelt den Entwurf, die Implementierung sowie die Evaluierung eines intelligenten Tutorensystems (ITS) mit einer Virtual Reality (VR) basierten Benutzeroberfläche zum Zwecke von Verkehrssicherheitstraining für Kinder. Dieses System ermöglicht es Kindern praktische Fähigkeiten in einer sicheren und realistischen Umgebung zu trainieren, ohne den örtlichen und zeitlichen Abhängigkeiten des traditionellen, straßenseitigen Trainings unterworfen zu sein. Dieses System macht außerdem von Domain und Student Modelling Techniken gebrauch, um Nutzerdaten während des Trainings zu analysieren und daraufhin automatisiert geeignete Instruktionen und Rückmeldung zu generieren. Dadurch kann die bisher erforderliche, ständige Überwachung durch Lehrpersonal drastisch reduziert werden. Verglichen mit bisherigen Lösungen ist insbesondere der zweite Aspekt eine grundlegende Neuheit für diesen Bereich. Um dies zu erreichen wurde ein neuartiges Framework für Domain und Student Modelling entwickelt, sowie eine modulare und erweiterbare virtuelle Umgebung für diese Art von Training. Während das Domain und Student Modelling Framework so entworfen wurde, um mit der hohen Dynamik des Straßenverkehrs sowie den vage definierten Fußgängeraufgaben zurecht zu kommen, unterstützt die modulare Umgebung unterschiedliche Eingabeformen sowie eine unkomplizierte und effiziente Methode, um Übungen zu erstellen und anzupassen. Die Arbeit beinhaltet außerdem zwei Nutzerstudien mit Grundschulkindern. Diese Studien belegen dem System eine hohe Benutzerakzeptanz und stellt das Potenzial des Systems heraus, wichtige Fähigkeiten für Fußgängersicherheit durch autodidaktisches Training zu verbessern. Nicht zuletzt beschreibt die Arbeit Experimente mit verschiedenen Formen von VR Eingaben und zeigt die Richtung für zukünftige Arbeit auf

    Spatial Interaction for Immersive Mixed-Reality Visualizations

    Get PDF
    Growing amounts of data, both in personal and professional settings, have caused an increased interest in data visualization and visual analytics. Especially for inherently three-dimensional data, immersive technologies such as virtual and augmented reality and advanced, natural interaction techniques have been shown to facilitate data analysis. Furthermore, in such use cases, the physical environment often plays an important role, both by directly influencing the data and by serving as context for the analysis. Therefore, there has been a trend to bring data visualization into new, immersive environments and to make use of the physical surroundings, leading to a surge in mixed-reality visualization research. One of the resulting challenges, however, is the design of user interaction for these often complex systems. In my thesis, I address this challenge by investigating interaction for immersive mixed-reality visualizations regarding three core research questions: 1) What are promising types of immersive mixed-reality visualizations, and how can advanced interaction concepts be applied to them? 2) How does spatial interaction benefit these visualizations and how should such interactions be designed? 3) How can spatial interaction in these immersive environments be analyzed and evaluated? To address the first question, I examine how various visualizations such as 3D node-link diagrams and volume visualizations can be adapted for immersive mixed-reality settings and how they stand to benefit from advanced interaction concepts. For the second question, I study how spatial interaction in particular can help to explore data in mixed reality. There, I look into spatial device interaction in comparison to touch input, the use of additional mobile devices as input controllers, and the potential of transparent interaction panels. Finally, to address the third question, I present my research on how user interaction in immersive mixed-reality environments can be analyzed directly in the original, real-world locations, and how this can provide new insights. Overall, with my research, I contribute interaction and visualization concepts, software prototypes, and findings from several user studies on how spatial interaction techniques can support the exploration of immersive mixed-reality visualizations.Zunehmende Datenmengen, sowohl im privaten als auch im beruflichen Umfeld, führen zu einem zunehmenden Interesse an Datenvisualisierung und visueller Analyse. Insbesondere bei inhärent dreidimensionalen Daten haben sich immersive Technologien wie Virtual und Augmented Reality sowie moderne, natürliche Interaktionstechniken als hilfreich für die Datenanalyse erwiesen. Darüber hinaus spielt in solchen Anwendungsfällen die physische Umgebung oft eine wichtige Rolle, da sie sowohl die Daten direkt beeinflusst als auch als Kontext für die Analyse dient. Daher gibt es einen Trend, die Datenvisualisierung in neue, immersive Umgebungen zu bringen und die physische Umgebung zu nutzen, was zu einem Anstieg der Forschung im Bereich Mixed-Reality-Visualisierung geführt hat. Eine der daraus resultierenden Herausforderungen ist jedoch die Gestaltung der Benutzerinteraktion für diese oft komplexen Systeme. In meiner Dissertation beschäftige ich mich mit dieser Herausforderung, indem ich die Interaktion für immersive Mixed-Reality-Visualisierungen im Hinblick auf drei zentrale Forschungsfragen untersuche: 1) Was sind vielversprechende Arten von immersiven Mixed-Reality-Visualisierungen, und wie können fortschrittliche Interaktionskonzepte auf sie angewendet werden? 2) Wie profitieren diese Visualisierungen von räumlicher Interaktion und wie sollten solche Interaktionen gestaltet werden? 3) Wie kann räumliche Interaktion in diesen immersiven Umgebungen analysiert und ausgewertet werden? Um die erste Frage zu beantworten, untersuche ich, wie verschiedene Visualisierungen wie 3D-Node-Link-Diagramme oder Volumenvisualisierungen für immersive Mixed-Reality-Umgebungen angepasst werden können und wie sie von fortgeschrittenen Interaktionskonzepten profitieren. Für die zweite Frage untersuche ich, wie insbesondere die räumliche Interaktion bei der Exploration von Daten in Mixed Reality helfen kann. Dabei betrachte ich die Interaktion mit räumlichen Geräten im Vergleich zur Touch-Eingabe, die Verwendung zusätzlicher mobiler Geräte als Controller und das Potenzial transparenter Interaktionspanels. Um die dritte Frage zu beantworten, stelle ich schließlich meine Forschung darüber vor, wie Benutzerinteraktion in immersiver Mixed-Reality direkt in der realen Umgebung analysiert werden kann und wie dies neue Erkenntnisse liefern kann. Insgesamt trage ich mit meiner Forschung durch Interaktions- und Visualisierungskonzepte, Software-Prototypen und Ergebnisse aus mehreren Nutzerstudien zu der Frage bei, wie räumliche Interaktionstechniken die Erkundung von immersiven Mixed-Reality-Visualisierungen unterstützen können

    Virtual Reality in Mathematics Education (VRiME):An exploration of the integration and design of virtual reality for mathematics education

    Get PDF
    This thesis explores the use of Virtual Reality (VR) in mathematics education. Four VR prototypes were designed and developed during the PhD project to teach equations, geometry, and vectors and facilitate collaboration.Paper A investigates asymmetric VR for classroom integration and collaborative learning and presents a new taxonomy of asymmetric interfaces. Paper B proposes how VR could assist students with Autism Spectrum Disorder (ASD) in learning daily living skills involving basic mathematical concepts. Paper C investigates how VR could enhance social inclusion and mathematics learning for neurodiverse students. Paper D presents a VR prototype for teaching algebra and equation-solving strategies, noting positive student responses and the potential for knowledge transfer. Paper E investigates gesture-based interaction with dynamic geometry in VR for geometry education and presents a new taxonomy of learning environments. Finally, paper F explores the use of VR to visualise and contextualise mathematical concepts to teach software engineering students.The thesis concludes that VR offers promising avenues for transforming mathematics education. It aims to broaden our understanding of VR's educational potential, paving the way for more immersive learning experiences in mathematics education
    corecore