32 research outputs found

    Systems Support for Trusted Execution Environments

    Get PDF
    Cloud computing has become a default choice for data processing by both large corporations and individuals due to its economy of scale and ease of system management. However, the question of trust and trustoworthy computing inside the Cloud environments has been long neglected in practice and further exacerbated by the proliferation of AI and its use for processing of sensitive user data. Attempts to implement the mechanisms for trustworthy computing in the cloud have previously remained theoretical due to lack of hardware primitives in the commodity CPUs, while a combination of Secure Boot, TPMs, and virtualization has seen only limited adoption. The situation has changed in 2016, when Intel introduced the Software Guard Extensions (SGX) and its enclaves to the x86 ISA CPUs: for the first time, it became possible to build trustworthy applications relying on a commonly available technology. However, Intel SGX posed challenges to the practitioners who discovered the limitations of this technology, from the limited support of legacy applications and integration of SGX enclaves into the existing system, to the performance bottlenecks on communication, startup, and memory utilization. In this thesis, our goal is enable trustworthy computing in the cloud by relying on the imperfect SGX promitives. To this end, we develop and evaluate solutions to issues stemming from limited systems support of Intel SGX: we investigate the mechanisms for runtime support of POSIX applications with SCONE, an efficient SGX runtime library developed with performance limitations of SGX in mind. We further develop this topic with FFQ, which is a concurrent queue for SCONE's asynchronous system call interface. ShieldBox is our study of interplay of kernel bypass and trusted execution technologies for NFV, which also tackles the problem of low-latency clocks inside enclave. The two last systems, Clemmys and T-Lease are built on a more recent SGXv2 ISA extension. In Clemmys, SGXv2 allows us to significantly reduce the startup time of SGX-enabled functions inside a Function-as-a-Service platform. Finally, in T-Lease we solve the problem of trusted time by introducing a trusted lease primitive for distributed systems. We perform evaluation of all of these systems and prove that they can be practically utilized in existing systems with minimal overhead, and can be combined with both legacy systems and other SGX-based solutions. In the course of the thesis, we enable trusted computing for individual applications, high-performance network functions, and distributed computing framework, making a <vision of trusted cloud computing a reality

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications

    Enhanced mobility management mechanisms for 5G networks

    Get PDF
    Many mechanisms that served the legacy networks till now, are being identified as being grossly sub-optimal for 5G networks. The reason being, the increased complexity of the 5G networks compared previous legacy systems. One such class of mechanisms, important for any wireless standard, is the Mobility Management (MM) mechanisms. MM mechanismsensure the seamless connectivity and continuity of service for a user when it moves away from the geographic location where it initially got attached to the network. In this thesis, we firstly present a detailed state of the art on MM mechanisms. Based on the 5G requirements as well as the initial discussions on Beyond 5G networks, we provision a gap analysis for the current technologies/solutions to satisfy the presented requirements. We also define the persistent challenges that exist concerning MM mechanisms for 5G and beyond networks. Based on these challenges, we define the potential solutions and a novel framework for the 5G and beyond MM mechanisms. This framework specifies a set of MM mechanisms at the access, core and the extreme edge network (users/devices) level, that will help to satisfy the requirements for the 5G and beyond MM mechanisms. Following this, we present an on demand MM service concept. Such an on-demand feature provisions the necessary reliability, scalability and flexibility to the MM mechanisms. It's objective is to ensure that appropriate resources and mobility contexts are defined for users who will have heterogeneous mobility profiles, versatile QoS requirements in a multi-RAT network. Next, in this thesis we tackle the problem of core network signaling that occurs during MM in 5G/4G networks. A novel handover signaling mechanism has been developed, which eliminates unnecessary handshakes during the handover preparation phase, while allowing the transition to future softwarized network architectures. We also provide a handover failure aware handover preparation phase signaling process. We then utilize operator data and a realistic network deployment to perform a comparative analysis of the proposed strategy and the 3GPP handover signaling strategy on a network wide deployment scenario. We show the benefits of our strategy in terms of latency of handover process, and the transmission and processing cost incurred. Lastly, a novel user association and resource allocation methodology, namely AURA-5G, has been proposed. AURA-5G addresses scenarios wherein applications with heterogeneous requirements, i.e., enhanced Mobile Broadband (eMBB) and massive Machine Type Communications (mMTC), are present simultaneously. Consequently, a joint optimization process for performing the user association and resource allocation while being cognizant of heterogeneous application requirements, has been performed. We capture the peculiarities of this important mobility management process through the various constraints, such as backhaul requirements, dual connectivity options, available access resources, minimum rate requirements, etc., that we have imposed on a Mixed Integer Linear Program (MILP). The objective function of this established MILP problem is to maximize the total network throughput of the eMBB users, while satisfying the minimum requirements of the mMTC and eMBB users defined in a given scenario. Through numerical evaluations we show that our approach outperforms the baseline user association scenario significantly. Moreover, we have presented a system fairness analysis, as well as a novel fidelity and computational complexity analysis for the same, which express the utility of our methodology given the myriad network scenarios.Muchos mecanismos que sirvieron en las redes actuales, se están identificando como extremadamente subóptimos para las redes 5G. Esto es debido a la mayor complejidad de las redes 5G. Un tipo de mecanismo importante para cualquier estándar inalámbrico, consiste en el mecanismo de gestión de la movilidad (MM). Los mecanismos MM aseguran la conectividad sin interrupciones y la continuidad del servicio para un usuario cuando éste se aleja de la ubicación geográfica donde inicialmente se conectó a la red. En esta tesis, presentamos, en primer lugar, un estado del arte detallado de los mecanismos MM. Bas ándonos en los requisitos de 5G, así como en las discusiones iniciales sobre las redes Beyond 5G, proporcionamos un análisis de las tecnologías/soluciones actuales para satisfacer los requisitos presentados. También definimos los desafíos persistentes que existen con respecto a los mecanismos MM para redes 5G y Beyond 5G. En base a estos desafíos, definimos las posibles soluciones y un marco novedoso para los mecanismos 5G y Beyond 5G de MM. Este marco especifica un conjunto de mecanismos MM a nivel de red acceso, red del núcleo y extremo de la red (usuarios/dispositivos), que ayudarán a satisfacer los requisitos para los mecanismos MM 5G y posteriores. A continuación, presentamos el concepto de servicio bajo demanda MM. Tal característica proporciona la confiabilidad, escalabilidad y flexibilidad necesarias para los mecanismos MM. Su objetivo es garantizar que se definan los recursos y contextos de movilidad adecuados para los usuarios que tendrán perfiles de movilidad heterogéneos, y requisitos de QoS versátiles en una red multi-RAT. Más adelante, abordamos el problema de la señalización de la red troncal que ocurre durante la gestión de la movilidad en redes 5G/4G. Se ha desarrollado un nuevo mecanismo de señalización de handover, que elimina los intercambios de mensajes innecesarios durante la fase de preparación del handover, al tiempo que permite la transición a futuras arquitecturas de red softwarizada. Utilizamos los datos de operadores y consideramos un despliegue de red realista para realizar un análisis comparativo de la estrategia propuesta y la estrategia de señalización de 3GPP. Mostramos los beneficios de nuestra estrategia en términos de latencia del proceso de handover y los costes de transmisión y procesado. Por último, se ha propuesto una nueva asociación de usuarios y una metodología de asignación de recursos, i.e, AURA-5G. AURA-5G aborda escenarios en los que las aplicaciones con requisitos heterogéneos, i.e., enhanced Mobile Broadband (eMBB) y massive Machine Type Communications (mMTC), están presentes simultáneamente. En consecuencia, se ha llevado a cabo un proceso de optimización conjunta para realizar la asociación de usuarios y la asignación de recursos mientras se tienen en cuenta los requisitos de aplicaciónes heterogéneas. Capturamos las peculiaridades de este importante proceso de gestión de la movilidad a través de las diversas restricciones impuestas, como son los requisitos de backhaul, las opciones de conectividad dual, los recursos de la red de acceso disponibles, los requisitos de velocidad mínima, etc., que hemos introducido en un Mixed Integer Linear Program (MILP). La función objetivo de este problema MILP es maximizar el rendimiento total de la red de los usuarios de eMBB, y a la vez satisfacer los requisitos mínimos de los usuarios de mMTC y eMBB definidos en un escenario dado. A través de evaluaciones numéricas, mostramos que nuestro enfoque supera significativamente el escenario de asociación de usuarios de referencia. Además, hemos presentado un análisis de la justicia del sistema, así como un novedoso análisis de fidelidad y complejidad computacional para el mismo, que expresa la utilidad de nuestra metodología

    Methods for Reducing Monitoring Overhead in Runtime Verification

    Get PDF
    Runtime verification is a lightweight technique that serves to complement existing approaches, such as formal methods and testing, to ensure system correctness. In runtime verification, monitors are synthesized to check a system at run time against a set of properties the system is expected to satisfy. Runtime verification may be used to determine software faults before and after system deployment. The monitor(s) can be synthesized to notify, steer and/or perform system recovery from detected software faults at run time. The research and proposed methods presented in this thesis aim to reduce the monitoring overhead of runtime verification in terms of memory and execution time by leveraging time-triggered techniques for monitoring system events. Traditionally, runtime verification frameworks employ event-triggered monitors, where the invocation of the monitor occurs after every system event. Because systems events can be sporadic or bursty in nature, event-triggered monitoring behaviour is difficult to predict. Time-triggered monitors, on the other hand, periodically preempt and process system events, making monitoring behaviour predictable. However, software system state reconstruction is not guaranteed (i.e., missed state changes/events between samples). The first part of this thesis analyzes three heuristics that efficiently solve the NP-complete problem of minimizing the amount of memory required to store system state changes to guarantee accurate state reconstruction. The experimental results demonstrate that adopting near-optimal algorithms do not greatly change the memory consumption and execution time of monitored programs; hence, NP-completeness is likely not an obstacle for time-triggered runtime verification. The second part of this thesis introduces a novel runtime verification technique called hybrid runtime verification. Hybrid runtime verification enables the monitor to toggle between event- and time-triggered modes of operation. The aim of this approach is to reduce the overall runtime monitoring overhead with respect to execution time. Minimizing the execution time overhead by employing hybrid runtime verification is not in NP. An integer linear programming heuristic is formulated to determine near-optimal hybrid monitoring schemes. Experimental results show that the heuristic typically selects monitoring schemes that are equal to or better than naively selecting exclusively one operation mode for monitoring

    Intelligent control of induction motors

    Get PDF
    This thesis presents the development and implementation of an integral field oriented intelligent control for an induction motor (IM) drive using Fuzzy Logic Controller (FLC), and an Artificial Neural Network (ANN), employing a finite element controller and making use of a Proportional Integral (PI) adaptive controller as well. An analytical model of an induction motor drive has been developed. In order to prove the superiority of the proposed controller, the performance of this controller is compared with conventional PI-based IM drives. The performance of the proposed IM drive is investigated extensively at different operating conditions in simulation. The proposed adaptive PI-based speed controller’s performance is found to be robust and it is a potential candidate for high performance industrial drive applications. The novel work focuses on using a Finite Element Controller map (FECM) to manipulate adaptive controllers for motor control drives. A digital signal processing (DSP) board DS1104 and laboratory induction motor were used to implement the complete vector control scheme. The test results have been compared with simulated results at different dynamic operating conditions. The effectiveness of this control scheme has been evaluated, and it has been found to be more efficient than the conventional PI controller
    corecore