474 research outputs found

    Meta-Learning in Neural Networks: A Survey

    Get PDF
    The field of meta-learning, or learning-to-learn, has seen a dramatic rise in interest in recent years. Contrary to conventional approaches to AI where tasks are solved from scratch using a fixed learning algorithm, meta-learning aims to improve the learning algorithm itself, given the experience of multiple learning episodes. This paradigm provides an opportunity to tackle many conventional challenges of deep learning, including data and computation bottlenecks, as well as generalization. This survey describes the contemporary meta-learning landscape. We first discuss definitions of meta-learning and position it with respect to related fields, such as transfer learning and hyperparameter optimization. We then propose a new taxonomy that provides a more comprehensive breakdown of the space of meta-learning methods today. We survey promising applications and successes of meta-learning such as few-shot learning and reinforcement learning. Finally, we discuss outstanding challenges and promising areas for future research

    Foundations and Recent Trends in Multimodal Machine Learning: Principles, Challenges, and Open Questions

    Full text link
    Multimodal machine learning is a vibrant multi-disciplinary research field that aims to design computer agents with intelligent capabilities such as understanding, reasoning, and learning through integrating multiple communicative modalities, including linguistic, acoustic, visual, tactile, and physiological messages. With the recent interest in video understanding, embodied autonomous agents, text-to-image generation, and multisensor fusion in application domains such as healthcare and robotics, multimodal machine learning has brought unique computational and theoretical challenges to the machine learning community given the heterogeneity of data sources and the interconnections often found between modalities. However, the breadth of progress in multimodal research has made it difficult to identify the common themes and open questions in the field. By synthesizing a broad range of application domains and theoretical frameworks from both historical and recent perspectives, this paper is designed to provide an overview of the computational and theoretical foundations of multimodal machine learning. We start by defining two key principles of modality heterogeneity and interconnections that have driven subsequent innovations, and propose a taxonomy of 6 core technical challenges: representation, alignment, reasoning, generation, transference, and quantification covering historical and recent trends. Recent technical achievements will be presented through the lens of this taxonomy, allowing researchers to understand the similarities and differences across new approaches. We end by motivating several open problems for future research as identified by our taxonomy

    Systematic hybrid analog/digital signal coding

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2000.Includes bibliographical references (p. 201-206).This thesis develops low-latency, low-complexity signal processing solutions for systematic source coding, or source coding with side information at the decoder. We consider an analog source signal transmitted through a hybrid channel that is the composition of two channels: a noisy analog channel through which the source is sent unprocessed and a secondary rate-constrained digital channel; the source is processed prior to transmission through the digital channel. The challenge is to design a digital encoder and decoder that provide a minimum-distortion reconstruction of the source at the decoder, which has observations of analog and digital channel outputs. The methods described in this thesis have importance to a wide array of applications. For example, in the case of in-band on-channel (IBOC) digital audio broadcast (DAB), an existing noisy analog communications infrastructure may be augmented by a low-bandwidth digital side channel for improved fidelity, while compatibility with existing analog receivers is preserved. Another application is a source coding scheme which devotes a fraction of available bandwidth to the analog source and the rest of the bandwidth to a digital representation. This scheme is applicable in a wireless communications environment (or any environment with unknown SNR), where analog transmission has the advantage of a gentle roll-off of fidelity with SNR. A very general paradigm for low-latency, low-complexity source coding is composed of three basic cascaded elements: 1) a space rotation, or transformation, 2) quantization, and 3) lossless bitstream coding. The paradigm has been applied with great success to conventional source coding, and it applies equally well to systematic source coding. Focusing on the case involving a Gaussian source, Gaussian channel and mean-squared distortion, we determine optimal or near-optimal components for each of the three elements, each of which has analogous components in conventional source coding. The space rotation can take many forms such as linear block transforms, lapped transforms, or subband decomposition, all for which we derive conditions of optimality. For a very general case we develop algorithms for the design of locally optimal quantizers. For the Gaussian case, we describe a low-complexity scalar quantizer, the nested lattice scalar quantizer, that has performance very near that of the optimal systematic scalar quantizer. Analogous to entropy coding for conventional source coding, Slepian-Wolf coding is shown to be an effective lossless bitstream coding stage for systematic source coding.by Richard J. Barron.Ph.D

    Parallelization of dynamic programming recurrences in computational biology

    Get PDF
    The rapid growth of biosequence databases over the last decade has led to a performance bottleneck in the applications analyzing them. In particular, over the last five years DNA sequencing capacity of next-generation sequencers has been doubling every six months as costs have plummeted. The data produced by these sequencers is overwhelming traditional compute systems. We believe that in the future compute performance, not sequencing, will become the bottleneck in advancing genome science. In this work, we investigate novel computing platforms to accelerate dynamic programming algorithms, which are popular in bioinformatics workloads. We study algorithm-specific hardware architectures that exploit fine-grained parallelism in dynamic programming kernels using field-programmable gate arrays: FPGAs). We advocate a high-level synthesis approach, using the recurrence equation abstraction to represent dynamic programming and polyhedral analysis to exploit parallelism. We suggest a novel technique within the polyhedral model to optimize for throughput by pipelining independent computations on an array. This design technique improves on the state of the art, which builds latency-optimal arrays. We also suggest a method to dynamically switch between a family of designs using FPGA reconfiguration to achieve a significant performance boost. We have used polyhedral methods to parallelize the Nussinov RNA folding algorithm to build a family of accelerators that can trade resources for parallelism and are between 15-130x faster than a modern dual core CPU implementation. A Zuker RNA folding accelerator we built on a single workstation with four Xilinx Virtex 4 FPGAs outperforms 198 3 GHz Intel Core 2 Duo processors. Furthermore, our design running on a single FPGA is an order of magnitude faster than competing implementations on similar-generation FPGAs and graphics processors. Our work is a step toward the goal of automated synthesis of hardware accelerators for dynamic programming algorithms

    Scalable video compression with optimized visual performance and random accessibility

    Full text link
    This thesis is concerned with maximizing the coding efficiency, random accessibility and visual performance of scalable compressed video. The unifying theme behind this work is the use of finely embedded localized coding structures, which govern the extent to which these goals may be jointly achieved. The first part focuses on scalable volumetric image compression. We investigate 3D transform and coding techniques which exploit inter-slice statistical redundancies without compromising slice accessibility. Our study shows that the motion-compensated temporal discrete wavelet transform (MC-TDWT) practically achieves an upper bound to the compression efficiency of slice transforms. From a video coding perspective, we find that most of the coding gain is attributed to offsetting the learning penalty in adaptive arithmetic coding through 3D code-block extension, rather than inter-frame context modelling. The second aspect of this thesis examines random accessibility. Accessibility refers to the ease with which a region of interest is accessed (subband samples needed for reconstruction are retrieved) from a compressed video bitstream, subject to spatiotemporal code-block constraints. We investigate the fundamental implications of motion compensation for random access efficiency and the compression performance of scalable interactive video. We demonstrate that inclusion of motion compensation operators within the lifting steps of a temporal subband transform incurs a random access penalty which depends on the characteristics of the motion field. The final aspect of this thesis aims to minimize the perceptual impact of visible distortion in scalable reconstructed video. We present a visual optimization strategy based on distortion scaling which raises the distortion-length slope of perceptually significant samples. This alters the codestream embedding order during post-compression rate-distortion optimization, thus allowing visually sensitive sites to be encoded with higher fidelity at a given bit-rate. For visual sensitivity analysis, we propose a contrast perception model that incorporates an adaptive masking slope. This versatile feature provides a context which models perceptual significance. It enables scene structures that otherwise suffer significant degradation to be preserved at lower bit-rates. The novelty in our approach derives from a set of "perceptual mappings" which account for quantization noise shaping effects induced by motion-compensated temporal synthesis. The proposed technique reduces wavelet compression artefacts and improves the perceptual quality of video
    • …
    corecore