5,591 research outputs found

    A recurrent neural network architecture for biomedical event trigger classification

    Get PDF
    A “biomedical event” is a broad term used to describe the roles and interactions between entities (such as proteins, genes and cells) in a biological system. The task of biomedical event extraction aims at identifying and extracting these events from unstructured texts. An important component in the early stage of the task is biomedical trigger classification which involves identifying and classifying words/phrases that indicate an event. In this thesis, we present our work on biomedical trigger classification developed using the multi-level event extraction dataset. We restrict the scope of our classification to 19 biomedical event types grouped under four broad categories - Anatomical, Molecular, General and Planned. While most of the existing approaches are based on traditional machine learning algorithms which require extensive feature engineering, our model relies on neural networks to implicitly learn important features directly from the text. We use natural language processing techniques to transform the text into vectorized inputs that can be used in a neural network architecture. As per our knowledge, this is the first time neural attention strategies are being explored in the area of biomedical trigger classification. Our best results were obtained from an ensemble of 50 models which produced a micro F-score of 79.82%, an improvement of 1.3% over the previous best score

    Learning Conceptual-Contextual Embeddings for Medical Text

    Full text link
    External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks

    Advancing Italian Biomedical Information Extraction with Large Language Models: Methodological Insights and Multicenter Practical Application

    Full text link
    The introduction of computerized medical records in hospitals has reduced burdensome operations like manual writing and information fetching. However, the data contained in medical records are still far underutilized, primarily because extracting them from unstructured textual medical records takes time and effort. Information Extraction, a subfield of Natural Language Processing, can help clinical practitioners overcome this limitation, using automated text-mining pipelines. In this work, we created the first Italian neuropsychiatric Named Entity Recognition dataset, PsyNIT, and used it to develop a Large Language Model for this task. Moreover, we conducted several experiments with three external independent datasets to implement an effective multicenter model, with overall F1-score 84.77%, Precision 83.16%, Recall 86.44%. The lessons learned are: (i) the crucial role of a consistent annotation process and (ii) a fine-tuning strategy that combines classical methods with a "few-shot" approach. This allowed us to establish methodological guidelines that pave the way for future implementations in this field and allow Italian hospitals to tap into important research opportunities

    REflex: Flexible Framework for Relation Extraction in Multiple Domains

    Full text link
    Systematic comparison of methods for relation extraction (RE) is difficult because many experiments in the field are not described precisely enough to be completely reproducible and many papers fail to report ablation studies that would highlight the relative contributions of their various combined techniques. In this work, we build a unifying framework for RE, applying this on three highly used datasets (from the general, biomedical and clinical domains) with the ability to be extendable to new datasets. By performing a systematic exploration of modeling, pre-processing and training methodologies, we find that choices of pre-processing are a large contributor performance and that omission of such information can further hinder fair comparison. Other insights from our exploration allow us to provide recommendations for future research in this area.Comment: accepted by BioNLP 2019 at the Association of Computation Linguistics 201

    A Survey of the Impact of Self-Supervised Pretraining for Diagnostic Tasks with Radiological Images

    Full text link
    Self-supervised pretraining has been observed to be effective at improving feature representations for transfer learning, leveraging large amounts of unlabelled data. This review summarizes recent research into its usage in X-ray, computed tomography, magnetic resonance, and ultrasound imaging, concentrating on studies that compare self-supervised pretraining to fully supervised learning for diagnostic tasks such as classification and segmentation. The most pertinent finding is that self-supervised pretraining generally improves downstream task performance compared to full supervision, most prominently when unlabelled examples greatly outnumber labelled examples. Based on the aggregate evidence, recommendations are provided for practitioners considering using self-supervised learning. Motivated by limitations identified in current research, directions and practices for future study are suggested, such as integrating clinical knowledge with theoretically justified self-supervised learning methods, evaluating on public datasets, growing the modest body of evidence for ultrasound, and characterizing the impact of self-supervised pretraining on generalization.Comment: 32 pages, 6 figures, a literature survey submitted to BMC Medical Imagin
    • …
    corecore