173 research outputs found

    Revisiting Vulnerability Analysis in Modern Microprocessors

    Get PDF
    Abstract-The notion of Architectural Vulnerability Factor (AVF) has been extensively used to evaluate various aspects of design robustness. While AVF has been a very popular way of assessing element resiliency, its calculation requires rigorous and extremely time-consuming experiments. Furthermore, recent radiation studies in 90 nm and 65 nm technology nodes demonstrate that up to 55 percent of Single Event Upsets (SEUs) result in Multiple Bit Upsets (MBUs), and thus the Single Bit Flip (SBF) model employed in computing AVF needs to be reassessed. In this paper, we present a method for calculating the vulnerability of modern microprocessors -using Statistical Fault Injection (SFI)-several orders of magnitude faster than traditional SFI techniques, while also using more realistic fault models which reflect the existence of MBUs. Our method partitions the design into various hierarchical levels and systematically performs incremental fault injections to generate vulnerability estimates. The presented method has been applied on an Intel microprocessor and an Alpha 21264 design, accelerating fault injection by 15Â, on average, and reducing computational cost for investigating the effect of MBUs. Extensive experiments, focusing on the effect of MBUs in modern microprocessors, corroborate that the SBF model employed by current vulnerability estimation tools is not sufficient to accurately capture the increasing effect of MBUs in contemporary processes

    Neural network computing using on-chip accelerators

    Get PDF
    The use of neural networks, machine learning, or artificial intelligence, in its broadest and most controversial sense, has been a tumultuous journey involving three distinct hype cycles and a history dating back to the 1960s. Resurgent, enthusiastic interest in machine learning and its applications bolsters the case for machine learning as a fundamental computational kernel. Furthermore, researchers have demonstrated that machine learning can be utilized as an auxiliary component of applications to enhance or enable new types of computation such as approximate computing or automatic parallelization. In our view, machine learning becomes not the underlying application, but a ubiquitous component of applications. This view necessitates a different approach towards the deployment of machine learning computation that spans not only hardware design of accelerator architectures, but also user and supervisor software to enable the safe, simultaneous use of machine learning accelerator resources. In this dissertation, we propose a multi-transaction model of neural network computation to meet the needs of future machine learning applications. We demonstrate that this model, encompassing a decoupled backend accelerator for inference and learning from hardware and software for managing neural network transactions can be achieved with low overhead and integrated with a modern RISC-V microprocessor. Our extensions span user and supervisor software and data structures and, coupled with our hardware, enable multiple transactions from different address spaces to execute simultaneously, yet safely. Together, our system demonstrates the utility of a multi-transaction model to increase energy efficiency improvements and improve overall accelerator throughput for machine learning applications

    Aggressive undervolting of FPGAs : power & reliability trade-offs

    Get PDF
    In this work, we evaluate aggressive undervolting, i.e., voltage underscaling below the nominal level to reduce the energy consumption of Field Programmable Gate Arrays (FPGAs). Usually, voltage guardbands are added by chip vendors to ensure the worst-case process and environmental scenarios. Through experimenting on several FPGA architectures, we con¿rm a large voltage guardband for several FPGA components, which in turn, delivers signi¿cant power savings. However, further undervolting below the voltage guardband may cause reliability issues as the result of the circuit delay increase, and faults might start to appear. We extensively characterize the behavior of these faults in terms of the rate, location, type, as well as sensitivity to environmental temperature, primarily focusing on FPGA on-chip memories, or Block RAMs (BRAMs). Understanding this behavior can allow to deploy ef¿cient mitigation techniques, and in turn, FPGA-based designs can be improved for better energy, reliability, and performance trade-offs. Finally, as a case study, we evaluate a typical FPGA-based Neural Network (NN) accelerator when the FPGA voltage is underscaled. In consequence, the substantial NN energy savings come with the cost of NN accuracy loss. To attain power savings without NN accuracy loss below the voltage guardband gap, we proposed an application-aware technique and we also, evaluated the built-in Error-Correcting Code (ECC) mechanism. Hence, First, we developed an application-dependent BRAMs placement technique that relies on the deterministic behavior of undervolting faults, and mitigates these faults by mapping the most reliability sensitive NN parameters to BRAM blocks that are relatively more resistant to undervolting faults. Second, as a more general technique, we applied the built-in ECC of BRAMs and observed a signi¿cant fault coverage capability thanks to the behavior of undervolting faults, with a negligible power consumption overhead.En este trabajo, evaluamos el reducir el voltaje en forma agresiva, es decir, bajar la tensión por debajo del nivel nominal para reducir el consumo de energía en Field Programmable Gate Arrays (FPGA). Por lo general, los vendedores de chips establecen margen de seguridad al voltaje para garantizar el funcionamiento de los mismos en el peor de los casos y en los peores escenarios ambientales. Mediante la experimentación en varias arquitecturas FPGA, confirmamos que hay un margen de seguridad de voltaje grande en varios de los componentes de la FPGA, que a su vez, nos ofrece ahorros de energía significativos. Sin embargo, un trabajar a un voltaje por debajo del margen de seguridad del voltaje puede causar problemas de confiabilidad a medida ya que aumenta el retardo del circuito y pueden comenzar a aparecer fallos. Caracterizamos ampliamente el comportamiento de estos fallos en términos de velocidad, ubicación, tipo, así como la sensibilidad a la temperatura ambiental, centrándonos principalmente en memorias internas de la FPGA, o Block RAM (BRAM). Comprender este comportamiento puede permitir el desarrollo de técnicas eficientes de mitigación y, a su vez, mejorar los diseños basados en FPGA para obtener ahorros en energía, una mayor confiabilidad y un mayor rendimiento. Finalmente, como caso de estudio, evaluamos un acelerador típico de Redes Neuronales basado en FPGA cuando el voltaje de la FPGA esta por debajo del nivel mínimo de seguridad. En consecuencia, los considerables ahorros de energía de la red neuronal vienen asociados con la pérdida de precisión de la red neuronal. Para obtener ahorros de energía sin una pérdida de precisión en la red neuronal por debajo del margen de seguridad del voltaje, proponemos una técnica que tiene en cuenta la aplicación, asi mismo, evaluamos el mecanismo integrado en las BRAMs de Error Correction Code (ECC). Por lo tanto, en primer lugar, desarrollamos una técnica de colocación de BRAM dependiente de la aplicación que se basa en el comportamiento determinista de las fallos cuando la FPGA funciona por debajo del margen de seguridad, y se mitigan estos fallos asignando los parámetros de la red neuronal más sensibles a producir fallos a los bloques BRAM que son relativamente más resistentes a los fallos. En segundo lugar, como técnica más general, aplicamos el ECC incorporado de los BRAM y observamos una capacidad de cobertura de fallos significativo gracias a las características de comportamiento de fallos, con una sobrecoste de consumo de energía insignificantePostprint (published version
    corecore