3 research outputs found

    Probability models for information retrieval based on divergence from randomness

    Get PDF
    This thesis devises a novel methodology based on probability theory, suitable for the construction of term-weighting models of Information Retrieval. Our term-weighting functions are created within a general framework made up of three components. Each of the three components is built independently from the others. We obtain the term-weighting functions from the general model in a purely theoretic way instantiating each component with different probability distribution forms. The thesis begins with investigating the nature of the statistical inference involved in Information Retrieval. We explore the estimation problem underlying the process of sampling. De Finetti’s theorem is used to show how to convert the frequentist approach into Bayesian inference and we display and employ the derived estimation techniques in the context of Information Retrieval. We initially pay a great attention to the construction of the basic sample spaces of Information Retrieval. The notion of single or multiple sampling from different populations in the context of Information Retrieval is extensively discussed and used through-out the thesis. The language modelling approach and the standard probabilistic model are studied under the same foundational view and are experimentally compared to the divergence-from-randomness approach. In revisiting the main information retrieval models in the literature, we show that even language modelling approach can be exploited to assign term-frequency normalization to the models of divergence from randomness. We finally introduce a novel framework for the query expansion. This framework is based on the models of divergence-from-randomness and it can be applied to arbitrary models of IR, divergence-based, language modelling and probabilistic models included. We have done a very large number of experiment and results show that the framework generates highly effective Information Retrieval models

    Supporting Source Code Search with Context-Aware and Semantics-Driven Query Reformulation

    Get PDF
    Software bugs and failures cost trillions of dollars every year, and could even lead to deadly accidents (e.g., Therac-25 accident). During maintenance, software developers fix numerous bugs and implement hundreds of new features by making necessary changes to the existing software code. Once an issue report (e.g., bug report, change request) is assigned to a developer, she chooses a few important keywords from the report as a search query, and then attempts to find out the exact locations in the software code that need to be either repaired or enhanced. As a part of this maintenance, developers also often select ad hoc queries on the fly, and attempt to locate the reusable code from the Internet that could assist them either in bug fixing or in feature implementation. Unfortunately, even the experienced developers often fail to construct the right search queries. Even if the developers come up with a few ad hoc queries, most of them require frequent modifications which cost significant development time and efforts. Thus, construction of an appropriate query for localizing the software bugs, programming concepts or even the reusable code is a major challenge. In this thesis, we overcome this query construction challenge with six studies, and develop a novel, effective code search solution (BugDoctor) that assists the developers in localizing the software code of interest (e.g., bugs, concepts and reusable code) during software maintenance. In particular, we reformulate a given search query (1) by designing novel keyword selection algorithms (e.g., CodeRank) that outperform the traditional alternatives (e.g., TF-IDF), (2) by leveraging the bug report quality paradigm and source document structures which were previously overlooked and (3) by exploiting the crowd knowledge and word semantics derived from Stack Overflow Q&A site, which were previously untapped. Our experiment using 5000+ search queries (bug reports, change requests, and ad hoc queries) suggests that our proposed approach can improve the given queries significantly through automated query reformulations. Comparison with 10+ existing studies on bug localization, concept location and Internet-scale code search suggests that our approach can outperform the state-of-the-art approaches with a significant margin

    Implications of Computational Cognitive Models for Information Retrieval

    Get PDF
    This dissertation explores the implications of computational cognitive modeling for information retrieval. The parallel between information retrieval and human memory is that the goal of an information retrieval system is to find the set of documents most relevant to the query whereas the goal for the human memory system is to access the relevance of items stored in memory given a memory probe (Steyvers & Griffiths, 2010). The two major topics of this dissertation are desirability and information scent. Desirability is the context independent probability of an item receiving attention (Recker & Pitkow, 1996). Desirability has been widely utilized in numerous experiments to model the probability that a given memory item would be retrieved (Anderson, 2007). Information scent is a context dependent measure defined as the utility of an information item (Pirolli & Card, 1996b). Information scent has been widely utilized to predict the memory item that would be retrieved given a probe (Anderson, 2007) and to predict the browsing behavior of humans (Pirolli & Card, 1996b). In this dissertation, I proposed the theory that desirability observed in human memory is caused by preferential attachment in networks. Additionally, I showed that documents accessed in large repositories mirror the observed statistical properties in human memory and that these properties can be used to improve document ranking. Finally, I showed that the combination of information scent and desirability improves document ranking over existing well-established approaches
    corecore