1,628 research outputs found

    Improved dynamical particle swarm optimization method for structural dynamics

    Get PDF
    A methodology to the multiobjective structural design of buildings based on an improved particle swarm optimization algorithm is presented, which has proved to be very efficient and robust in nonlinear problems and when the optimization objectives are in conflict. In particular, the behaviour of the particle swarm optimization (PSO) classical algorithm is improved by dynamically adding autoadaptive mechanisms that enhance the exploration/exploitation trade-off and diversity of the proposed algorithm, avoiding getting trapped in local minima. A novel integrated optimization system was developed, called DI-PSO, to solve this problem which is able to control and even improve the structural behaviour under seismic excitations. In order to demonstrate the effectiveness of the proposed approach, the methodology is tested against some benchmark problems. Then a 3-story-building model is optimized under different objective cases, concluding that the improved multiobjective optimization methodology using DI-PSO is more efficient as compared with those designs obtained using single optimization.Peer ReviewedPostprint (published version

    Continuous non-revisiting genetic algorithm

    Get PDF
    The non-revisiting genetic algorithm (NrGA) is extended to handle continuous search space. The extended NrGA model, Continuous NrGA (cNrGA), employs the same tree-structure archive of NrGA to memorize the evaluated solutions, in which the search space is divided into non-overlapped partitions according to the distribution of the solutions. cNrGA is a bi-modulus evolutionary algorithm consisting of the genetic algorithm module (GAM) and the adaptive mutation module (AMM). When GAM generates an offspring, the offspring is sent to AMM and is mutated according to the density of the solutions stored in the memory archive. For a point in the search space with high solution-density, it infers a high probability that the point is close to the optimum and hence a near search is suggested. Alternatively, a far search is recommended for a point with low solution-density. Benefitting from the space partitioning scheme, a fast solution-density approximation is obtained. Also, the adaptive mutation scheme naturally avoid the generation of out-of-bound solutions. The performance of cNrGA is tested on 14 benchmark functions on dimensions ranging from 2 to 40. It is compared with real coded GA, differential evolution, covariance matrix adaptation evolution strategy and two improved particle swarm optimization. The simulation results show that cNrGA outperforms the other algorithms for multi-modal function optimization.published_or_final_versio

    Continuous non-revisiting genetic algorithm with random search space re-partitioning and one-gene-flip mutation

    Get PDF
    Special Session on Evolutionary Computer VisionIn continuous non-revisiting genetic algorithm (cNrGA), the solution set with different order leads to different density estimation and hence different mutation step size. As a result, the performance of cNrGA depends on the order of the evaluated solutions. In this paper, we propose to remove this dependence by a search space re-partitioning strategy. At each iteration, the strategy re-shuffles the solutions into random order. The re-ordered sequence is then used to construct a new density tree, which leads to a new space partition sets. Afterwards, instead of randomly picking a mutant within a partition, a new adaptive one-gene-flip mutation is applied. Motivated from the fact that the proposed adaptive mutation concerns only small amount of partitions, we propose a new density tree construction algorithm. This algorithm refuses to partition the sub-regions which do not contain any individual to be mutated, which simplifies the tree topology as well as speeds up the construction time. The new cNrGA integrated with the proposed re-partitioning strategy (cNrGA/RP/OGF) is examined on 19 benchmark functions at dimensions ranging from 2 to 40. The simulation results show that cNrGA/RP/OGF is significantly superior to the original cNrGA at most of the test functions. Its average performance is also better than those of six benchmark EAs. © 2010 IEEE.published_or_final_versio

    Chaotic biogeography algorithm for size and shape optimization of truss structures with frequency constraints

    Get PDF
    Size and shape optimization of truss structures with natural frequency constraints is inherently nonlinear dynamic optimization problem with  several local optima. Therefore theoptimization method should be sagacious enough to avoid being trapped in local optima and in this way to reduce premature convergence. To address this problem, we develop a Chaotic Biogeography-Based Optimization (CBBO) algorithm which combines the chaos theory and the biogeography-based optimization (BBO) to achieve an ecient optimization method. In this method, new chaotic migration and mutation operators are proposed to enhance the exploration ability of BBO. The performance of the method is demonstrated through five benchmark design examples with size and shape variables associated by multiply frequency constraints. The results show the eciency and robustness of proposed method and in most cases, CBBO finds a relatively lighter structural weight than those previously reported results in the literature

    Evolving Order and Chaos: Comparing Particle Swarm Optimization and Genetic Algorithms for Global Coordination of Cellular Automata

    Full text link
    We apply two evolutionary search algorithms: Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs) to the design of Cellular Automata (CA) that can perform computational tasks requiring global coordination. In particular, we compare search efficiency for PSO and GAs applied to both the density classification problem and to the novel generation of 'chaotic' CA. Our work furthermore introduces a new variant of PSO, the Binary Global-Local PSO (BGL-PSO)

    Multispecies Coevolution Particle Swarm Optimization Based on Previous Search History

    Get PDF
    A hybrid coevolution particle swarm optimization algorithm with dynamic multispecies strategy based on K-means clustering and nonrevisit strategy based on Binary Space Partitioning fitness tree (called MCPSO-PSH) is proposed. Previous search history memorized into the Binary Space Partitioning fitness tree can effectively restrain the individuals’ revisit phenomenon. The whole population is partitioned into several subspecies and cooperative coevolution is realized by an information communication mechanism between subspecies, which can enhance the global search ability of particles and avoid premature convergence to local optimum. To demonstrate the power of the method, comparisons between the proposed algorithm and state-of-the-art algorithms are grouped into two categories: 10 basic benchmark functions (10-dimensional and 30-dimensional), 10 CEC2005 benchmark functions (30-dimensional), and a real-world problem (multilevel image segmentation problems). Experimental results show that MCPSO-PSH displays a competitive performance compared to the other swarm-based or evolutionary algorithms in terms of solution accuracy and statistical tests

    Structural bias in population-based algorithms

    Get PDF
    Challenging optimisation problems are abundant in all areas of science and industry. Since the 1950s, scientists have responded to this by developing ever-diversifying families of 'black box' optimisation algorithms. The latter are designed to be able to address any optimisation problem, requiring only that the quality of any candidate solution can be calculated via a 'fitness function' specific to the problem. For such algorithms to be successful, at least three properties are required: (i) an effective informed sampling strategy, that guides the generation of new candidates on the basis of the fitnesses and locations of previously visited candidates; (ii) mechanisms to ensure efficiency, so that (for example) the same candidates are not repeatedly visited; and (iii) the absence of structural bias, which, if present, would predispose the algorithm towards limiting its search to specific regions of the solution space. The first two of these properties have been extensively investigated, however the third is little understood and rarely explored. In this article we provide theoretical and empirical analyses that contribute to the understanding of structural bias. In particular, we state and prove a theorem concerning the dynamics of population variance in the case of real-valued search spaces and a 'flat' fitness landscape. This reveals how structural bias can arise and manifest as non-uniform clustering of the population over time. Critically, theory predicts that structural bias is exacerbated with (independently) increasing population size, and increasing problem difficulty. These predictions, supported by our empirical analyses, reveal two previously unrecognised aspects of structural bias that would seem vital for algorithm designers and practitioners. Respectively, (i) increasing the population size, though ostensibly promoting diversity, will magnify any inherent structural bias, and (ii) the effects of structural bias are more apparent when faced with (many classes of) 'difficult' problems. Our theoretical result also contributes to the 'exploitation/exploration' conundrum in optimisation algorithm design, by suggesting that two commonly used approaches to enhancing exploration - increasing the population size, and increasing the disruptiveness of search operators - have quite distinct implications in terms of structural bias

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing
    corecore