54 research outputs found

    Revisiting IP-to-AS mapping for AS-level traceroute

    Get PDF
    ABSTRACT On the way to obtaining accurate AS-level traceroute paths, lots of efforts have focused on the improvement of the original IP-to-AS mapping table which was extracted from BGP routing tables. One of those efforts is called pair matching which refines the original mapping table by maximizing the number of matched pairs of traceroute and BGP AS paths from the same AS to the same destination. However, in the existing pair-matching-based method, the granularity for mapping is prefix, i.e. that the IP addresses in the same /24 prefix always belong to the same AS or set of ASes, which may yield ambiguity and does not hold in some cases. In this paper, we revisit the IP-to-AS mapping with IP-address granularity by allowing IP addresses in the same prefix to be mapped to different ASes

    Travelling Without Moving: Discovering Neighborhood Adjacencies

    Full text link
    peer reviewedSince the early 2000's, the research community has explored many approaches to discover and study the Internet topology, designing both data collection mechanisms and models. In this paper, we introduce SAGE (Subnet AggrEgation), a new topology discovery tool that infers the hop-level graph of a target network from a single vantage point. SAGE relies on subnet-level data to build a directed acyclic graph of a network modeling how its (meshes of) routers, a.k.a. neighborhoods, are linked together. Using two groundtruth networks and measurements in the wild, we show SAGE accurately discovers links and is consistent with itself upon a change of vantage point. By mapping subnets to the discovered links, the directed acyclic graphs discovered by SAGE can be re-interpreted as bipartite graphs. Using data collected in the wild from both the PlanetLab testbed and the EdgeNet cluster, we demonstrate that such a model is a credible tool for studying computer networks

    Compact routing for the future internet

    Get PDF
    The Internet relies on its inter-domain routing system to allow data transfer between any two endpoints regardless of where they are located. This routing system currently uses a shortest path routing algorithm (modified by local policy constraints) called the Border Gateway Protocol. The massive growth of the Internet has led to large routing tables that will continue to grow. This will present a serious engineering challenge for router designers in the long-term, rendering state (routing table) growth at this pace unsustainable. There are various short-term engineering solutions that may slow the growth of the inter-domain routing tables, at the expense of increasing the complexity of the network. In addition, some of these require manual configuration, or introduce additional points of failure within the network. These solutions may give an incremental, constant factor, improvement. However, we know from previous work that all shortest path routing algorithms require forwarding state that grows linearly with the size of the network in the worst case. Rather than attempt to sustain inter-domain routing through a shortest path routing algorithm, compact routing algorithms exist that guarantee worst-case sub-linear state requirements at all nodes by allowing an upper-bound on path length relative to the theoretical shortest path, known as path stretch. Previous work has shown the promise of these algorithms when applied to synthetic graphs with similar properties to the known Internet graph, but they haven't been studied in-depth on Internet topologies derived from real data. In this dissertation, I demonstrate the consistently strong performance of these compact routing algorithms for inter-domain routing by performing a longitudinal study of two compact routing algorithms on the Internet Autonomous System (AS) graph over time. I then show, using the k-cores graph decomposition algorithm, that the structurally important nodes in the AS graph are highly stable over time. This property makes these nodes suitable for use as the "landmark" nodes used by the most stable of the compact routing algorithms evaluated, and the use of these nodes shows similar strong routing performance. Finally, I present a decentralised compact routing algorithm for dynamic graphs, and present state requirements and message overheads on AS graphs using realistic simulation inputs. To allow the continued long-term growth of Internet routing state, an alternative routing architecture may be required. The use of the compact routing algorithms presented in this dissertation offer promise for a scalable future Internet routing system

    Interdomain Route Leak Mitigation: A Pragmatic Approach

    Get PDF
    The Internet has grown to support many vital functions, but it is not administered by any central authority. Rather, the many smaller networks that make up the Internet - called Autonomous Systems (ASes) - independently manage their own distinct host address space and routing policy. Routers at the borders between ASes exchange information about how to reach remote IP prefixes with neighboring networks over the control plane with the Border Gateway Protocol (BGP). This inter-AS communication connects hosts across AS boundaries to build the illusion of one large, unified global network - the Internet. Unfortunately, BGP is a dated protocol that allows ASes to inject virtually any routing information into the control plane. The Internet’s decentralized administrative structure means that ASes lack visibility of the relationships and policies of other networks, and have little means of vetting the information they receive. Routes are global, connecting hosts around the world, but AS operators can only see routes exchanged between their own network and directly connected neighbor networks. This mismatch between global route scope and local network operator visibility gives rise to adverse routing events like route leaks, which occur when an AS advertises a route that should have been kept within its own network by mistake. In this work, we explore our thesis: that malicious and unintentional route leaks threaten Internet availability, but pragmatic solutions can mitigate their impact. Leaks effectively reroute traffic meant for the leak destination along the leak path. This diversion of flows onto unexpected paths can cause broad disruption for hosts attempting to reach the leak destination, as well as obstruct the normal traffic on the leak path. These events are usually due to misconfiguration and not malicious activity, but we show in our initial work that vrouting-capable adversaries can weaponize route leaks and fraudulent path advertisements to enhance data plane attacks on Internet infrastructure and services. Existing solutions like Internet Routing Registry (IRR) filtering have not succeeded in solving the route leak problem, as globally disruptive route leaks still periodically interrupt the normal functioning of the Internet. We examine one relatively new solution - Peerlocking or defensive AS PATH filtering - where ASes exchange toplogical information to secure their networks. Our measurements reveal that Peerlock is already deployed in defense of the largest ASes, but has found little purchase elsewhere. We conclude by introducing a novel leak defense system, Corelock, designed to provide Peerlock-like protection without the scalability concerns that have limited Peerlock’s scope. Corelock builds meaningful route leak filters from globally distributed route collectors and can be deployed without cooperation from other network
    • …
    corecore