616 research outputs found

    ATMSeer: Increasing Transparency and Controllability in Automated Machine Learning

    Full text link
    To relieve the pain of manually selecting machine learning algorithms and tuning hyperparameters, automated machine learning (AutoML) methods have been developed to automatically search for good models. Due to the huge model search space, it is impossible to try all models. Users tend to distrust automatic results and increase the search budget as much as they can, thereby undermining the efficiency of AutoML. To address these issues, we design and implement ATMSeer, an interactive visualization tool that supports users in refining the search space of AutoML and analyzing the results. To guide the design of ATMSeer, we derive a workflow of using AutoML based on interviews with machine learning experts. A multi-granularity visualization is proposed to enable users to monitor the AutoML process, analyze the searched models, and refine the search space in real time. We demonstrate the utility and usability of ATMSeer through two case studies, expert interviews, and a user study with 13 end users.Comment: Published in the ACM Conference on Human Factors in Computing Systems (CHI), 2019, Glasgow, Scotland U

    Deep Learning for Edge Computing Applications: A State-of-the-Art Survey

    Get PDF
    With the booming development of Internet-of-Things (IoT) and communication technologies such as 5G, our future world is envisioned as an interconnected entity where billions of devices will provide uninterrupted service to our daily lives and the industry. Meanwhile, these devices will generate massive amounts of valuable data at the network edge, calling for not only instant data processing but also intelligent data analysis in order to fully unleash the potential of the edge big data. Both the traditional cloud computing and on-device computing cannot sufficiently address this problem due to the high latency and the limited computation capacity, respectively. Fortunately, the emerging edge computing sheds a light on the issue by pushing the data processing from the remote network core to the local network edge, remarkably reducing the latency and improving the efficiency. Besides, the recent breakthroughs in deep learning have greatly facilitated the data processing capacity, enabling a thrilling development of novel applications, such as video surveillance and autonomous driving. The convergence of edge computing and deep learning is believed to bring new possibilities to both interdisciplinary researches and industrial applications. In this article, we provide a comprehensive survey of the latest efforts on the deep-learning-enabled edge computing applications and particularly offer insights on how to leverage the deep learning advances to facilitate edge applications from four domains, i.e., smart multimedia, smart transportation, smart city, and smart industry. We also highlight the key research challenges and promising research directions therein. We believe this survey will inspire more researches and contributions in this promising field

    Using graph structural information about flows to enhance short-term demand prediction in bike-sharing systems

    Get PDF
    Short-term demand prediction is important for managing transportation infrastructure, particularly in times of disruption, or around new developments. Many bike-sharing schemes face the challenges of managing service provision and bike fleet rebalancing due to the “tidal flows” of travel and use. For them, it is crucial to have precise predictions of travel demand at a fine spatiotemporal granularities. Despite recent advances in machine learning approaches (e.g. deep neural networks) and in short-term traffic demand predictions, relatively few studies have examined this issue using a feature engineering approach to inform model selection. This research extracts novel time-lagged variables describing graph structures and flow interactions from real-world bike usage datasets, including graph node Out-strength, In-strength, Out-degree, In-degree and PageRank. These are used as inputs to different machine learning algorithms to predict short-term bike demand. The results of the experiments indicate the graph-based attributes to be more important in demand prediction than more commonly used meteorological information. The results from the different machine learning approaches (XGBoost, MLP, LSTM) improve when time-lagged graph information is included. Deep neural networks were found to be better able to handle the sequences of the time-lagged graph variables than other approaches, resulting in more accurate forecasting. Thus incorporating graph-based features can improve understanding and modelling of demand patterns in urban areas, supporting bike-sharing schemes and promoting sustainable transport. The proposed approach can be extended into many existing models using spatial data and can be readily transferred to other applications for predicting dynamics in mass transit systems. A number of limitations and areas of further work are discussed
    • …
    corecore