102 research outputs found

    One size does not fit all : accelerating OLAP workloads with GPUs

    Get PDF
    GPU has been considered as one of the next-generation platforms for real-time query processing databases. In this paper we empirically demonstrate that the representative GPU databases [e.g., OmniSci (Open Source Analytical Database & SQL Engine,, 2019)] may be slower than the representative in-memory databases [e.g., Hyper (Neumann and Leis, IEEE Data Eng Bull 37(1):3-11, 2014)] with typical OLAP workloads (with Star Schema Benchmark) even if the actual dataset size of each query can completely fit in GPU memory. Therefore, we argue that GPU database designs should not be one-size-fits-all; a general-purpose GPU database engine may not be well-suited for OLAP workloads without careful designed GPU memory assignment and GPU computing locality. In order to achieve better performance for GPU OLAP, we need to re-organize OLAP operators and re-optimize OLAP model. In particular, we propose the 3-layer OLAP model to match the heterogeneous computing platforms. The core idea is to maximize data and computing locality to specified hardware. We design the vector grouping algorithm for data-intensive workload which is proved to be assigned to CPU platform adaptive. We design the TOP-DOWN query plan tree strategy to guarantee the optimal operation in final stage and pushing the respective optimizations to the lower layers to make global optimization gains. With this strategy, we design the 3-stage processing model (OLAP acceleration engine) for hybrid CPU-GPU platform, where the computing-intensive star-join stage is accelerated by GPU, and the data-intensive grouping & aggregation stage is accelerated by CPU. This design maximizes the locality of different workloads and simplifies the GPU acceleration implementation. Our experimental results show that with vector grouping and GPU accelerated star-join implementation, the OLAP acceleration engine runs 1.9x, 3.05x and 3.92x faster than Hyper, OmniSci GPU and OmniSci CPU in SSB evaluation with dataset of SF = 100.Peer reviewe

    Heterogeneity-Aware Operator Placement in Column-Store DBMS

    Get PDF
    Due to the tremendous increase in the amount of data efficiently managed by current database systems, optimization is still one of the most challenging issues in database research. Today’s query optimizer determine the most efficient composition of physical operators to execute a given SQL query, whereas the underlying hardware consists of a multi-core CPU. However, hardware systems are more and more shifting towards heterogeneity, combining a multi-core CPU with various computing units, e.g., GPU or FPGA cores. In order to efficiently utilize the provided performance capability of such heterogeneous hardware, the assignment of physical operators to computing units gains importance. In this paper, we propose a heterogeneity-aware physical operator placement strategy (HOP) for in-memory columnar database systems in a heterogeneous environment. Our placement approach takes operators from the physical query execution plan as an input and assigns them to computing units using a cost model at runtime. To enable this runtime decision, our cost model uses the characteristics of the computing units, execution properties of the operators, as well as runtime data to estimate execution costs for each unit. We evaluated our approach on full TPC-H queries within a prototype database engine. As we are going to show, the placement in a heterogeneous hardware system has a high influence on query performance

    Saber: window-based hybrid stream processing for heterogeneous architectures

    Get PDF
    Modern servers have become heterogeneous, often combining multicore CPUs with many-core GPGPUs. Such heterogeneous architectures have the potential to improve the performance of data-intensive stream processing applications, but they are not supported by current relational stream processing engines. For an engine to exploit a heterogeneous architecture, it must execute streaming SQL queries with sufficient data-parallelism to fully utilise all available heterogeneous processors, and decide how to use each in the most effective way. It must do this while respecting the semantics of streaming SQL queries, in particular with regard to window handling. We describe SABER, a hybrid high-performance relational stream processing engine for CPUs and GPGPUs. SABER executes windowbased streaming SQL queries in a data-parallel fashion using all available CPU and GPGPU cores. Instead of statically assigning query operators to heterogeneous processors, SABER employs a new adaptive heterogeneous lookahead scheduling strategy, which increases the share of queries executing on the processor that yields the highest performance. To hide data movement costs, SABER pipelines the transfer of stream data between different memory types and the CPU/GPGPU. Our experimental comparison against state-ofthe-art engines shows that SABER increases processing throughput while maintaining low latency for a wide range of streaming SQL queries with small and large windows sizes

    Hardware-conscious Query Processing in GPU-accelerated Analytical Engines

    Get PDF
    In order to improve their power efficiency and computational capacity, modern servers are adopting hardware accelerators, especially GPUs. Modern analytical DMBS engines have been highly optimized for multi-core multi-CPU query execution, but lack the necessary abstractions to support concurrent hardware-conscious query execution over multiple heterogeneous devices and, thus, are unable to take full advantage of the available accelerators. In this work, we present a Heterogeneity-conscious Analytical query Processing Engine (HAPE), a hardware-conscious analytical engines that targets efficient concurrent multi-CPU multi-GPU query execution. HAPE decomposes heterogeneous query execution into i) efficient single-device and ii) concurrent multi-device query execution. It uses hardware-conscious algorithms designed for single-device execution and combines them into efficient intra-device hardware-conscious execution modules, via code generation. HAPE combines these modules to achieve concurrent multi-device execution by handling data and control transfers. We validate our design by building a prototype and evaluate its performance on a co-processing radix-join and TPC-H queries. We show that it achieves up to 10x and 3.5x speed-up on the join against CPU and GPU alternatives and 1.6x-8x against state-of-the-art CPU- and GPU-based commercial DBMS on the queries

    Hardware-conscious Hash-Joins on GPUs

    Get PDF
    Traditionally, analytical database engines have used task parallelism provided by modern multisocket multicore CPUs for scaling query execution. Over the past few years, GPUs have started gaining traction as accelerators for processing analytical queries due to their massively data-parallel nature and high memory bandwidth. Recent work on designing join algorithms for CPUs has shown that carefully tuned join implementations that exploit underlying hardware can outperform naive, hardware-oblivious counterparts and provide excellent performance on modern multicore servers. However, there has been no such systematic analysis of hardware-conscious join algorithms for GPUs that systematically explores the dimensions of partitioning (partitioned versus non-partitioned joins), data location (data fitting and not fitting in GPU device memory), and access pattern (skewed versus uniform). In this paper, we present the design and implementation of a family of novel, partitioning-based GPU-join algorithms that are tuned to exploit various GPU hardware characteristics for working around the two main limitations of GPUs–limited memory capacity and slow PCIe interface. Using a thorough evaluation, we show that: i) hardware-consciousness plays a key role in GPU joins similar to CPU joins and our join algorithms can process 1 Billion tuples/second even if no data is GPU resident, ii) radix partitioning-based GPU joins that are tuned to exploit GPU hardware can substantially outperform non-partitioned hash joins, iii) hardware-conscious GPU joins can effectively overcome GPU limitations and match, or even outperform, state-of-the-art CPU joins
    • …
    corecore