1,254 research outputs found

    Dynamical systems and forward-backward algorithms associated with the sum of a convex subdifferential and a monotone cocoercive operator

    Full text link
    In a Hilbert framework, we introduce continuous and discrete dynamical systems which aim at solving inclusions governed by structured monotone operators A=∂Φ+BA=\partial\Phi+B, where ∂Φ\partial\Phi is the subdifferential of a convex lower semicontinuous function Φ\Phi, and BB is a monotone cocoercive operator. We first consider the extension to this setting of the regularized Newton dynamic with two potentials. Then, we revisit some related dynamical systems, namely the semigroup of contractions generated by AA, and the continuous gradient projection dynamic. By a Lyapunov analysis, we show the convergence properties of the orbits of these systems. The time discretization of these dynamics gives various forward-backward splitting methods (some new) for solving structured monotone inclusions involving non-potential terms. The convergence of these algorithms is obtained under classical step size limitation. Perspectives are given in the field of numerical splitting methods for optimization, and multi-criteria decision processes.Comment: 25 page

    Advanced Denoising for X-ray Ptychography

    Get PDF
    The success of ptychographic imaging experiments strongly depends on achieving high signal-to-noise ratio. This is particularly important in nanoscale imaging experiments when diffraction signals are very weak and the experiments are accompanied by significant parasitic scattering (background), outliers or correlated noise sources. It is also critical when rare events such as cosmic rays, or bad frames caused by electronic glitches or shutter timing malfunction take place. In this paper, we propose a novel iterative algorithm with rigorous analysis that exploits the direct forward model for parasitic noise and sample smoothness to achieve a thorough characterization and removal of structured and random noise. We present a formal description of the proposed algorithm and prove its convergence under mild conditions. Numerical experiments from simulations and real data (both soft and hard X-ray beamlines) demonstrate that the proposed algorithms produce better results when compared to state-of-the-art methods.Comment: 24 pages, 9 figure
    • …
    corecore