745 research outputs found

    The ubiquitous nature of the Horizontal Branch second U-jump: A link with the Blue Hook scenario?

    Full text link
    In a previous paper we reported on a discontinuity in the extreme horizontal branch (EHB) of the Galactic globular cluster NGC6752, which we called the second U-jump. This feature was attributed to a combination of post zero-age horizontal branch evolution and diffusion effects. In this follow-up study we analyze other EHB clusters and show that the second U-jump is a common feature among EHB clusters reaching T_{eff}\ge 23,000K, and that its onset in different clusters converges around T_{eff}\sim 21,000\pm3,000K. We also present near-ultraviolet diagrams of \omega Cen and NGC2808, the only two objects with spectroscopically confirmed ``blue hook'' stars (T_{eff}\ge 35,000K). We confirm predictions of a photometric discontinuity separating late from early-helium flashers. Moreover, we present empirical evidence that the second U-jump population might be mainly composed by early-helium flashers. Lastly, we revisit the discussion on the ubiquitous nature of the gaps and jumps so far identified in the blue HB tails, suggesting a possible discrete nature of the distribution in temperature of the HB stars.Comment: 15 pages, 8 figures. Higher resolution version available via ftp at ftp://ftp.pd.astro.it/pub/momany/momany.tar A&A accepte

    The circumstellar environment of the YSO TMR-1 and a revisit to the candidate very low-mass object TMR-1C

    Full text link
    TMR-1 (IRAS~04361+2547) is a class~I proto-stellar source located in the nearby Taurus star-forming region. Its circumstellar environment is characterized by extended dust emission with complex structures and conspicuous filaments. A faint companion, called TMR-1C, located near the proto-star had been detected in previous studies, but its nature as a very young substellar object remained inconclusive. To improve the constraints on the nature of TMR-1C, and to investigate the process of very low-mass star formation in the TMR-1 system we use very sensitive infrared imaging observations as well as NIR spectroscopy. We construct the SED of TMR-1C over a much larger wavelength range as had been possible in previous work and compare it with models of extincted background stars, young sub-stellar objects, and very low-mass stars with circumstellar disk and envelope emission. We also search for additional low-luminosity objects in the immediate environment of the TMR-1, study the surrounding NIR dust morphology, and analyse the emission line spectrum of a filamentary structure in the physical context of a bow-shock model. We find that the observed SED of TMR-1C is inconsistent with an extincted background star, nor can be fitted with available models for a young extremely low-mass (<12M_Jup) object. Our near-IR spectrum indicates an effective temperature of at least ~3000K. Based on a good match of TMR-1C's SED with radiation transfer models of young stellar objects with circumstellar disks, we propose that TMR-1C is most likely a very low-mass star with M~0.1-0.2M_sun surrounded by a circumstellar disk with high inclination, i>80deg. Moreover, we detect an additional very faint source, which we call TMR-1D, and that shows a quite striking symmetry in position with TMR-1C. TMR-1C and TMR-1D may have been formed from a common triggered star-formation event, caused by... (abstract abridged)Comment: 15 pages, 11 figures, accepted for publication in A&

    16th Biennial Symposium on Arts & Technology Proceedings

    Get PDF

    The planetary nebula Abell 48 and its [WN] nucleus

    Full text link
    We have conducted a detailed multi-wavelength study of the peculiar nebula Abell 48 and its central star. We classify the nucleus as a helium-rich, hydrogen-deficient star of type [WN4-5]. The evidence for either a massive WN or a low-mass [WN] interpretation is critically examined, and we firmly conclude that Abell 48 is a planetary nebula (PN) around an evolved low-mass star, rather than a Population I ejecta nebula. Importantly, the surrounding nebula has a morphology typical of PNe, and is not enriched in nitrogen, and thus not the `peeled atmosphere' of a massive star. We estimate a distance of 1.6 kpc and a reddening, E(B-V) = 1.90 mag, the latter value clearly showing the nebula lies on the near side of the Galactic bar, and cannot be a massive WN star. The ionized mass (~0.3 M_Sun) and electron density (700 cm^-3) are typical of middle-aged PNe. The observed stellar spectrum was compared to a grid of models from the Potsdam Wolf-Rayet (PoWR) grid. The best fit temperature is 71 kK, and the atmospheric composition is dominated by helium with an upper limit on the hydrogen abundance of 10 per cent. Our results are in very good agreement with the recent study of Todt et al., who determined a hydrogen fraction of 10 per cent and an unusually large nitrogen fraction of ~5 per cent. This fraction is higher than any other low-mass H-deficient star, and is not readily explained by current post-AGB models. We give a discussion of the implications of this discovery for the late-stage evolution of intermediate-mass stars. There is now tentative evidence for two distinct helium-dominated post-AGB lineages, separate to the helium and carbon dominated surface compositions produced by a late thermal pulse. Further theoretical work is needed to explain these recent discoveries.Comment: 19 pages, 10 figures, to appear in MNRAS. Version 3 incorporates proof correction
    • …
    corecore