374 research outputs found

    A Convenient Adomian-Pade Technique for the Nonlinear Oscillator Equation

    Get PDF
    Very recently, the convenient way to calculate the Adomian series was suggested. This paper combines this technique and the Pade approximation to develop some new iteration schemes. Then, the combined method is applied to nonlinear models and the residual functions illustrate the accuracies and conveniences

    Application of Homotopy Perturbation and Modified Adomian Decomposition Methods for Higher Order Boundary Value Problems

    Get PDF
    This work considers the numerical solution of higher order boundary value problems using Homotopy perturbation method (HPM) and modified Adomian decomposition method (MADM). HPM is applied without any transformation or calculation of Adomian polynomials. The differential equations are transformed into an infinite number of simple problems without necessarily using the perturbation techniques. Two numerical examples are solved to illustrate the method and the results are compared with the exact and MADM solutions. The accuracy and rapid convergence of HPM in handling the equations without calculating Adomian polynomials reveals its advantage over MAD

    Approximation Method for the Heat Equation with Derivative Boundary Conditions

    Get PDF
    In this paper, modification of Adomian decomposition method is introduced for solving heat equation with derivative boundary conditions. Some examples and the obtained results demonstrate efficiency of the proposed method. Keywords: Modified decomposition method, Heat equation, Derivative boundary conditions

    Application of Semi-Analytical Technique for Solving Thirteenth Order Boundary Value Problem

    Get PDF
    This work considers the numerical solution of thirteenth order boundary value problems using the modified Adomian decomposition method (MADM). Some examples are considered to illustrate the efficiency of the method. It is demonstrated that MADM converges more rapidly to the exact solution than the existing methods in literature and it reduces the computational involvemen

    Comparing numerical methods for the solutions of systems of ordinary differential equations

    Get PDF
    AbstractIn this article, we implement a relatively new numerical technique, the Adomian decomposition method, for solving linear and nonlinear systems of ordinary differential equations. The method in applied mathematics can be an effective procedure to obtain analytic and approximate solutions for different types of operator equations. In this scheme, the solution takes the form of a convergent power series with easily computable components. This paper will present a numerical comparison between the Adomian decomposition and a conventional method such as the fourth-order Runge-Kutta method for solving systems of ordinary differential equations. The numerical results demonstrate that the new method is quite accurate and readily implemented

    Approximate Solution of Riccati Differential Equation via Modified Greens Decomposition Method

    Get PDF
    Riccati differential equations (RDEs) plays important role in the various fields of defence, physics, engineering, medical science, and mathematics. A new approach to find the numerical solution of a class of RDEs with quadratic nonlinearity is presented in this paper. In the process of solving the pre-mentioned class of RDEs, we used an ordered combination of Green’s function, Adomian’s polynomials, and Pade` approximation. This technique is named as green decomposition method with Pade` approximation (GDMP). Since, the most contemporary definition of Adomian polynomials has been used in GDMP. Therefore, a specific class of Adomian polynomials is used to advance GDMP to modified green decomposition method with Pade` approximation (MGDMP). Further, MGDMP is applied to solve some special RDEs, belonging to the considered class of RDEs, absolute error of the obtained solution is compared with Adomian decomposition method (ADM) and Laplace decomposition method with Pade` approximation (LADM-Pade`). As well, the impedance of the method emphasised with the comparative error tables of the exact solution and the associated solutions with respect to ADM, LADM-Pade`, and MGDMP. The observation from this comparative study exhibits that MGDMP provides an improved numerical solution in the given interval. In spite of this, generally, some of the particular RDEs (with variable coefficients) cannot be easily solved by some of the existing methods, such as LADM-Pade` or Homotopy perturbation methods. However, under some limitations, MGDMP can be successfully applied to solve such type of RDEs

    Optimal Parameters for Nonlinear Hirota-Satsuma Coupled KdV System by Using Hybrid Firefly Algorithm with Modified Adomian Decomposition

    Get PDF
    In this paper, several parameters of the non-linear Hirota-Satsuma coupled KdV system were estimated using a hybrid between the Firefly Algorithm (FFA) and the Modified Adomian decomposition method (MADM). It turns out that optimal parameters can significantly improve the solutions when using a suitably selected fitness function for this problem. The results obtained show that the approximate solutions are highly compatible with the exact solutions and that the hybrid method FFA_MADM gives higher efficiency and accuracy compared to the classic MADM method
    • …
    corecore