15,336 research outputs found

    Introduction: The Fourth International Workshop on Epigenetic Robotics

    Get PDF
    As in the previous editions, this workshop is trying to be a forum for multi-disciplinary research ranging from developmental psychology to neural sciences (in its widest sense) and robotics including computational studies. This is a two-fold aim of, on the one hand, understanding the brain through engineering embodied systems and, on the other hand, building artificial epigenetic systems. Epigenetic contains in its meaning the idea that we are interested in studying development through interaction with the environment. This idea entails the embodiment of the system, the situatedness in the environment, and of course a prolonged period of postnatal development when this interaction can actually take place. This is still a relatively new endeavor although the seeds of the developmental robotics community were already in the air since the nineties (Berthouze and Kuniyoshi, 1998; Metta et al., 1999; Brooks et al., 1999; Breazeal, 2000; Kozima and Zlatev, 2000). A few had the intuition – see Lungarella et al. (2003) for a comprehensive review – that, intelligence could not be possibly engineered simply by copying systems that are “ready made” but rather that the development of the system fills a major role. This integration of disciplines raises the important issue of learning on the multiple scales of developmental time, that is, how to build systems that eventually can learn in any environment rather than program them for a specific environment. On the other hand, the hope is that robotics might become a new tool for brain science similarly to what simulation and modeling have become for the study of the motor system. Our community is still pretty much evolving and “under construction” and for this reason, we tried to encourage submissions from the psychology community. Additionally, we invited four neuroscientists and no roboticists for the keynote lectures. We received a record number of submissions (more than 50), and given the overall size and duration of the workshop together with our desire to maintain a single-track format, we had to be more selective than ever in the review process (a 20% acceptance rate on full papers). This is, if not an index of quality, at least an index of the interest that gravitates around this still new discipline

    Machine Learning For Planetary Mining Applications

    Get PDF
    Robotic mining could prove to be an efficient method of mining resources for extended missions on the Moon or Mars. One component of robotic mining is scouting an area for resources to be mined by other robotic systems. Writing controllers for scouting can be difficult due to the need for fault tolerance, inter-agent cooperation, and agent problem solving. Reinforcement learning could solve these problems by enabling the scouts to learn to improve their performance over time. This work is divided into two sections, with each section addressing the use of machine learning in this domain. The first contribution of this work focuses on the application of reinforcement learning to mining mission analysis. Various mission parameters were modified and control policies were learned. Then agent performance was used to assess the effect of the mission parameters on the performance of the mission. The second contribution of this work explores the potential use of reinforcement learning to learn a controller for the scouts. Through learning, these scouts would improve their ability to map their surroundings over time

    Asynchronous displays for multi-UV search tasks

    Get PDF
    Synchronous video has long been the preferred mode for controlling remote robots with other modes such as asynchronous control only used when unavoidable as in the case of interplanetary robotics. We identify two basic problems for controlling multiple robots using synchronous displays: operator overload and information fusion. Synchronous displays from multiple robots can easily overwhelm an operator who must search video for targets. If targets are plentiful, the operator will likely miss targets that enter and leave unattended views while dealing with others that were noticed. The related fusion problem arises because robots' multiple fields of view may overlap forcing the operator to reconcile different views from different perspectives and form an awareness of the environment by "piecing them together". We have conducted a series of experiments investigating the suitability of asynchronous displays for multi-UV search. Our first experiments involved static panoramas in which operators selected locations at which robots halted and panned their camera to capture a record of what could be seen from that location. A subsequent experiment investigated the hypothesis that the relative performance of the panoramic display would improve as the number of robots was increased causing greater overload and fusion problems. In a subsequent Image Queue system we used automated path planning and also automated the selection of imagery for presentation by choosing a greedy selection of non-overlapping views. A fourth set of experiments used the SUAVE display, an asynchronous variant of the picture-in-picture technique for video from multiple UAVs. The panoramic displays which addressed only the overload problem led to performance similar to synchronous video while the Image Queue and SUAVE displays which addressed fusion as well led to improved performance on a number of measures. In this paper we will review our experiences in designing and testing asynchronous displays and discuss challenges to their use including tracking dynamic targets. © 2012 by the American Institute of Aeronautics and Astronautics, Inc

    Emerging Linguistic Functions in Early Infancy

    Get PDF
    This paper presents results from experimental studies on early language acquisition in infants and attempts to interpret the experimental results within the framework of the Ecological Theory of Language Acquisition (ETLA) recently proposed by (Lacerda et al., 2004a). From this perspective, the infant’s first steps in the acquisition of the ambient language are seen as a consequence of the infant’s general capacity to represent sensory input and the infant’s interaction with other actors in its immediate ecological environment. On the basis of available experimental evidence, it will be argued that ETLA offers a productive alternative to traditional descriptive views of the language acquisition process by presenting an operative model of how early linguistic function may emerge through interaction

    A Review of Welding in Space and Related Technologies

    Get PDF
    Deployment of welding and additive manufacturing (AM) technologies in the space environment has the potential to revolutionize how orbiting platforms are designed, manufactured, and assembled. These technologies offer the option for repair of sustained damage to habitat structures on space missions, as astronauts would be able to manufacture new parts (using welding-derived AM processes suitable for use in the external space environment) and weld cracks. An added benefit is that required repairs can be achieved more economically, as new parts need not be shipped from Earth. With further maturation of in-space welding capabilities, astronauts could operate under given standards and weld damaged structures rather than rely on cargo resupply. This Technical Memorandum (TM) begins by reviewing the available literature relevant to welding in space, focusing on solidification, heat and mass transfer, and fluid flows in microgravity. This survey considers research on the effects of welding in microgravity on a material system. The various in-space welding devices that have been previously designed and tested are examined to determine their capabilities and shortcomings, with a focus on the results of their individual welding experiments. Safety measures are discussed to protect the orbiting International Space Station (ISS) and crew during welding operations. Finally, the state of the art is examined by focusing on current approaches to AM and on-orbit welding that are being developed by several companies in conjunction with NASA

    Kinematics and control algorithm development and simulation for a redundant two-arm robotic manipulator system

    Get PDF
    An efficient approach to cartesian motion and force control of a 7 degree of freedom (DOF) manipulator is presented. It is based on extending the active stiffness controller to the 7 DOF case in general and use of an efficient version of the gradient projection technique for solving the inverse kinematics problem. Cooperative control is achieved through appropriate configuration of individual manipulator controllers. In addition, other aspects of trajectory generation using standard techniques are integrated into the controller. The method is then applied to a specific manipulator of interest (Robotics Research T-710). Simulation of the kinematics, dynamics, and control are provided in the context of several scenarios: one pertaining to a noncontact pick and place operation; one relating to contour following where contact is made between the manipulator and environment; and one pertaining to cooperative control
    • …
    corecore