1,440 research outputs found

    An integrative analysis of cancer gene expression studies using Bayesian latent factor modeling

    Full text link
    We present an applied study in cancer genomics for integrating data and inferences from laboratory experiments on cancer cell lines with observational data obtained from human breast cancer studies. The biological focus is on improving understanding of transcriptional responses of tumors to changes in the pH level of the cellular microenvironment. The statistical focus is on connecting experimentally defined biomarkers of such responses to clinical outcome in observational studies of breast cancer patients. Our analysis exemplifies a general strategy for accomplishing this kind of integration across contexts. The statistical methodologies employed here draw heavily on Bayesian sparse factor models for identifying, modularizing and correlating with clinical outcome these signatures of aggregate changes in gene expression. By projecting patterns of biological response linked to specific experimental interventions into observational studies where such responses may be evidenced via variation in gene expression across samples, we are able to define biomarkers of clinically relevant physiological states and outcomes that are rooted in the biology of the original experiment. Through this approach we identify microenvironment-related prognostic factors capable of predicting long term survival in two independent breast cancer datasets. These results suggest possible directions for future laboratory studies, as well as indicate the potential for therapeutic advances though targeted disruption of specific pathway components.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS261 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A Selective Review of Group Selection in High-Dimensional Models

    Full text link
    Grouping structures arise naturally in many statistical modeling problems. Several methods have been proposed for variable selection that respect grouping structure in variables. Examples include the group LASSO and several concave group selection methods. In this article, we give a selective review of group selection concerning methodological developments, theoretical properties and computational algorithms. We pay particular attention to group selection methods involving concave penalties. We address both group selection and bi-level selection methods. We describe several applications of these methods in nonparametric additive models, semiparametric regression, seemingly unrelated regressions, genomic data analysis and genome wide association studies. We also highlight some issues that require further study.Comment: Published in at http://dx.doi.org/10.1214/12-STS392 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Identification of genes associated with multiple cancers via integrative analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Advancement in gene profiling techniques makes it possible to measure expressions of thousands of genes and identify genes associated with development and progression of cancer. The identified cancer-associated genes can be used for diagnosis, prognosis prediction, and treatment selection. Most existing cancer microarray studies have been focusing on the identification of genes associated with a specific type of cancer. Recent biomedical studies suggest that different cancers may share common susceptibility genes. A comprehensive description of the associations between genes and cancers requires identification of not only multiple genes associated with a specific type of cancer but also genes associated with multiple cancers.</p> <p>Results</p> <p>In this article, we propose the Mc.TGD (Multi-cancer Threshold Gradient Descent), an integrative analysis approach capable of analyzing multiple microarray studies on different cancers. The Mc.TGD is the first regularized approach to conduct "two-dimensional" selection of genes with joint effects on cancer development. Simulation studies show that the Mc.TGD can more accurately identify genes associated with multiple cancers than meta analysis based on "one-dimensional" methods. As a byproduct, identification accuracy of genes associated with only one type of cancer may also be improved. We use the Mc.TGD to analyze seven microarray studies investigating development of seven different types of cancers. We identify one gene associated with six types of cancers and four genes associated with five types of cancers. In addition, we also identify 11, 9, 18, and 17 genes associated with 4 to 1 types of cancers, respectively. We evaluate prediction performance using a Leave-One-Out cross validation approach and find that only 4 (out of 570) subjects cannot be properly predicted.</p> <p>Conclusion</p> <p>The Mc.TGD can identify a short list of genes associated with one or multiple types of cancers. The identified genes are considerably different from those identified using meta analysis or analysis of marginal effects.</p

    Testing significance of features by lassoed principal components

    Full text link
    We consider the problem of testing the significance of features in high-dimensional settings. In particular, we test for differentially-expressed genes in a microarray experiment. We wish to identify genes that are associated with some type of outcome, such as survival time or cancer type. We propose a new procedure, called Lassoed Principal Components (LPC), that builds upon existing methods and can provide a sizable improvement. For instance, in the case of two-class data, a standard (albeit simple) approach might be to compute a two-sample tt-statistic for each gene. The LPC method involves projecting these conventional gene scores onto the eigenvectors of the gene expression data covariance matrix and then applying an L1L_1 penalty in order to de-noise the resulting projections. We present a theoretical framework under which LPC is the logical choice for identifying significant genes, and we show that LPC can provide a marked reduction in false discovery rates over the conventional methods on both real and simulated data. Moreover, this flexible procedure can be applied to a variety of types of data and can be used to improve many existing methods for the identification of significant features.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS182 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    DLMM as a lossless one-shot algorithm for collaborative multi-site distributed linear mixed models

    Get PDF
    Linear mixed models are commonly used in healthcare-based association analyses for analyzing multi-site data with heterogeneous site-specific random effects. Due to regulations for protecting patients\u27 privacy, sensitive individual patient data (IPD) typically cannot be shared across sites. We propose an algorithm for fitting distributed linear mixed models (DLMMs) without sharing IPD across sites. This algorithm achieves results identical to those achieved using pooled IPD from multiple sites (i.e., the same effect size and standard error estimates), hence demonstrating the lossless property. The algorithm requires each site to contribute minimal aggregated data in only one round of communication. We demonstrate the lossless property of the proposed DLMM algorithm by investigating the associations between demographic and clinical characteristics and length of hospital stay in COVID-19 patients using administrative claims from the UnitedHealth Group Clinical Discovery Database. We extend this association study by incorporating 120,609 COVID-19 patients from 11 collaborative data sources worldwide

    Graph Kernels

    Get PDF
    We present a unified framework to study graph kernels, special cases of which include the random walk (Gärtner et al., 2003; Borgwardt et al., 2005) and marginalized (Kashima et al., 2003, 2004; Mahé et al., 2004) graph kernels. Through reduction to a Sylvester equation we improve the time complexity of kernel computation between unlabeled graphs with n vertices from O(n^6) to O(n^3). We find a spectral decomposition approach even more efficient when computing entire kernel matrices. For labeled graphs we develop conjugate gradient and fixed-point methods that take O(dn^3) time per iteration, where d is the size of the label set. By extending the necessary linear algebra to Reproducing Kernel Hilbert Spaces (RKHS) we obtain the same result for d-dimensional edge kernels, and O(n^4) in the infinite-dimensional case; on sparse graphs these algorithms only take O(n^2) time per iteration in all cases. Experiments on graphs from bioinformatics and other application domains show that these techniques can speed up computation of the kernel by an order of magnitude or more. We also show that certain rational kernels (Cortes et al., 2002, 2003, 2004) when specialized to graphs reduce to our random walk graph kernel. Finally, we relate our framework to R-convolution kernels (Haussler, 1999) and provide a kernel that is close to the optimal assignment kernel of Fröhlich et al. (2006) yet provably positive semi-definite
    corecore