930 research outputs found

    Sensors for product characterization and quality of specialty crops—A review

    Get PDF
    This review covers developments in non-invasive techniques for quality analysis and inspection of specialty crops, mainly fresh fruits and vegetables, over the past decade up to the year 2010. Presented and discussed in this review are advanced sensing technologies including computer vision, spectroscopy, X-rays, magnetic resonance, mechanical contact, chemical sensing, wireless sensor networks and radiofrequency identification sensors. The current status of different sensing systems is described in the context of commercial application. The review also discusses future research needs and potentials of these sensing technologies. Emphases are placed on those technologies that have been proven effective or have shown great potential for agro-food applications. Despite significant progress in the development of non-invasive techniques for quality assessment of fruits and vegetables, the pace for adoption of these technologies by the specialty crop industry has been slow

    Non-destructive technologies for fruit and vegetable size determination - a review

    Get PDF
    Here, we review different methods for non-destructive horticultural produce size determination, focusing on electronic technologies capable of measuring fruit volume. The usefulness of produce size estimation is justified and a comprehensive classification system of the existing electronic techniques to determine dimensional size is proposed. The different systems identified are compared in terms of their versatility, precision and throughput. There is general agreement in considering that online measurement of axes, perimeter and projected area has now been achieved. Nevertheless, rapid and accurate volume determination of irregular-shaped produce, as needed for density sorting, has only become available in the past few years. An important application of density measurement is soluble solids content (SSC) sorting. If the range of SSC in the batch is narrow and a large number of classes are desired, accurate volume determination becomes important. A good alternative for fruit three-dimensional surface reconstruction, from which volume and surface area can be computed, is the combination of height profiles from a range sensor with a two-dimensional object image boundary from a solid-state camera (brightness image) or from the range sensor itself (intensity image). However, one of the most promising technologies in this field is 3-D multispectral scanning, which combines multispectral data with 3-D surface reconstructio

    Application of Visible to Near-Infrared Spectroscopy for Non-Destructive Assessment of Quality Parameters of Fruit

    Get PDF
    The accuracy and robustness of prediction models are very important to the successful commercial application of visible to near-infrared spectroscopy (Vis-NIRS) on fruit. The difference in physiological characteristics of fruit is very wide, which necessitates variance in the type of spectrometers applied to collect spectral data, pre-processing of the collected data and chemometric techniques used to develop robust models. Relevant practices of data collection, processing and the development of models are a challenge because of the required knowledge of fruit physiology in addition to the Vis-NIRS expertise of a researcher. This chapter deals with the application of Vis-NIRS on fruit by discussing commonly used spectrometers, data chemometric treatment and common models developed for assessing quality of specific types of fruit. The chapter intends to create an overview of commonly used techniques for guiding general users of these techniques. Current status, gaps and future perspectives of the application of Vis-NIRS on fruit are also discussed for challenging researchers who are experts in this research field

    Nondestructive measurement of fruit and vegetable quality

    Get PDF
    We review nondestructive techniques for measuring internal and external quality attributes of fruit and vegetables, such as color, size and shape, flavor, texture, and absence of defects. The different techniques are organized according to their physical measurement principle. We first describe each technique and then list some examples. As many of these techniques rely on mathematical models and particular data processing methods, we discuss these where needed. We pay particular attention to techniques that can be implemented online in grading lines

    Application of Hyperspectral Imaging and Acoustic Emission Techniques for Apple Quality Prediction

    Get PDF
    There is a growing demand for developing effective non-destructive quality assessment methods with quick response, high accuracy, and low cost for fresh fruits. In this study, hyperspectral reflectance imaging (400 to 1000 nm) and acoustic emission (AE) tests were applied to ‘GoldRush‘ apples (total number, n = 180) to predict fruit firmness, total soluble solids (TSS), and surface color parameters (L*, a*, b*) during an eight-week storage period. Partial least squares (PLS) regression, least squares support vector machine (LS-SVM), and multivariate linear regression (MLR) methods were used to establish models to predict the quality attributes of the apples. The results showed that hyperspectral imaging (HSI) could accurately predict all the attributes except TSS, while the AE method was capable of predicting fruit firmness, b* color index, and TSS. Overall, HSI regression using PLS had better comprehensive ability for predicting firmness, TSS, and color parameters (L*, a*, b*) than AE, with correlation coefficients of prediction (rp) of 0.92, 0.41, 0.83, 0.87, and 0.94 and root mean square errors of prediction (RMSEP) of 4.32 (N), 1.78 (°Brix), 3.41, 2.28, and 4.29, respectively, while AE regression using LS-SVM gave rp values of 0.88, 0.74, 0.34, 0.37, and 0.81 and RMSEP values of 4.26 (N), 0.64 (°Brix), 4.69, 1.8, and 5.17 for firmness, TSS, and color parameters (L*, a*, b*), respectively. The results show the potential of these two non-destructive methods for predicting some of the quality attributes of apples

    Fusarium

    Get PDF
    Fusarium is a large cosmopolitan genus of ascomycete fungi that are among the most important toxigenic plant pathogens causing seed and soil-borne diseases in a wide variety of agricultural crops worldwide. Fusarium species are broadly distributed in soil, root and plant tissues, and other organic substrates. Almost all species are able to generate mycotoxins, as secondary metabolites, that cause different physiological responses in plants. This book provides an overview of recent research on Fusarium species in the fields of metabolites, pathogenicity, plant-pathogen interactions, and management strategies in agricultural practices

    Review: computer vision applied to the inspection and quality control of fruits and vegetables

    Get PDF
    This is a review of the current existing literature concerning the inspection of fruits and vegetables with the application of computer vision, where the techniques most used to estimate various properties related to quality are analyzed. The objectives of the typical applications of such systems include the classification, quality estimation according to the internal and external characteristics, supervision of fruit processes during storage or the evaluation of experimental treatments. In general, computer vision systems do not only replace manual inspection, but can also improve their skills. In conclusion, computer vision systems are powerful tools for the automatic inspection of fruits and vegetables. In addition, the development of such systems adapted to the food industry is fundamental to achieve competitive advantages

    Detection of multi-tomato leaf diseases (late blight, target and bacterial spots) in different stages by using a spectral-based sensor.

    Get PDF
    Several diseases have threatened tomato production in Florida, resulting in large losses, especially in fresh markets. In this study, a high-resolution portable spectral sensor was used to investigate the feasibility of detecting multi-diseased tomato leaves in different stages, including early or asymptomatic stages. One healthy leaf and three diseased tomato leaves (late blight, target and bacterial spots) were defined into four stages (healthy, asymptomatic, early stage and late stage) and collected from a field. Fifty-seven spectral vegetation indices (SVIs) were calculated in accordance with methods published in previous studies and established in this study. Principal component analysis was conducted to evaluate SVIs. Results revealed six principal components (PCs) whose eigenvalues were greater than 1. SVIs with weight coefficients ranking from 1 to 30 in each selected PC were applied to a K-nearest neighbour for classification. Amongst the examined leaves, the healthy ones had the highest accuracy (100%) and the lowest error rate (0) because of their uniform tissues. Late stage leaves could be distinguished more easily than the two other disease categories caused by similar symptoms on the multi-diseased leaves. Further work may incorporate the proposed technique into an image system that can be operated to monitor multi-diseased tomato plants in fields

    Modern Seed Technology

    Get PDF
    Satisfying the increasing number of consumer demands for high-quality seeds with enhanced performance is one of the most imperative challenges of modern agriculture. In this view, it is essential to remember that the seed quality of crops does not improve

    Advancement of non-destructive spectral measurements for the quality of major tropical fruits and vegetables: a review

    Get PDF
    The quality of tropical fruits and vegetables and the expanding global interest in eating healthy foods have resulted in the continual development of reliable, quick, and cost-effective quality assurance methods. The present review discusses the advancement of non-destructive spectral measurements for evaluating the quality of major tropical fruits and vegetables. Fourier transform infrared (FTIR), Near-infrared (NIR), Raman spectroscopy, and hyperspectral imaging (HSI) were used to monitor the external and internal parameters of papaya, pineapple, avocado, mango, and banana. The ability of HSI to detect both spectral and spatial dimensions proved its efficiency in measuring external qualities such as grading 516 bananas, and defects in 10 mangoes and 10 avocados with 98.45%, 97.95%, and 99.9%, respectively. All of the techniques effectively assessed internal characteristics such as total soluble solids (TSS), soluble solid content (SSC), and moisture content (MC), with the exception of NIR, which was found to have limited penetration depth for fruits and vegetables with thick rinds or skins, including avocado, pineapple, and banana. The appropriate selection of NIR optical geometry and wavelength range can help to improve the prediction accuracy of these crops. The advancement of spectral measurements combined with machine learning and deep learning technologies have increased the efficiency of estimating the six maturity stages of papaya fruit, from the unripe to the overripe stages, with F1 scores of up to 0.90 by feature concatenation of data developed by HSI and visible light. The presented findings in the technological advancements of non-destructive spectral measurements offer promising quality assurance for tropical fruits and vegetables
    corecore